43 resultados para Potential antichagasic agents
em Université de Lausanne, Switzerland
Resumo:
Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.
Resumo:
Mucosal surfaces represent the main sites in which environmental microorganisms and antigens interact with the host. Sentinel cells, including epithelial cells, lumenal macrophages, and intraepithelial dendritic cells, continuously sense the environment and coordinate defenses for the protection of mucosal tissues. The mucosal epithelial cells are crucial actors in coordinating defenses. They sense the outside world and respond to environmental signals by releasing chemokines and cytokines that recruit inflammatory and immune cells to control potential infectious agents and to attract cells able to trigger immune responses. Among immune cells, dendritic cells (DC) play a key role in controlling adaptive immune responses, due to their capacity to internalize foreign materials and to present antigens to naive T and B lymphocytes, locally or in draining organized lymphoid tissues. Immune cells recruited in epithelial tissues can, in turn, act upon the epithelial cells and change their phenotype in a process referred to as epithelial metaplasia.
Resumo:
The epidermal growth factor receptor (EGFR) plays a central role in cell life by controlling processes such as growth or proliferation. This receptor is commonly overexpressed in a number of epithelial malignancies and its upregulation is often associated with an aggressive phenotype of the tumor. Thus, targeting of EGFR represents a very promising challenge in oncology, and antibodies raised against this receptor have been investigated as potential antitumor agents. Various putative mechanisms of action were proposed for such antibodies, including decreased proliferation, induction of apoptosis, stimulation of the immunological response against targeted cancer cells or combinations thereof. We report here the development of an alternative high affinity molecule that is directed against EGFR. Production of this pentameric protein, named peptabody-EGF, includes expression in a bacterial expression system and subsequent refolding and multimerization of peptabody monomers. The protein complex contains 5 human EGF ligand domains, which confer specific binding towards the extracellular portion of EGFR. Receptor binding of the peptabody-EGF had a strong antiproliferative effect on different cancer cell lines overexpressing EGFR. However, cells expressing constitutive levels of the target receptor were barely affected. Peptabody-EGF treated cancer cells exhibited typical characteristics of apoptosis, which was found to be induced within 30 min after the addition of the peptabody-EGF. In vitro experiments demonstrated a significantly higher binding activity for peptabody-EGF than for the therapeutic monoclonal EGFR antibody Mab-425. Furthermore, the antitumor action provoked by the peptabody-EGF was greatly superior than antibody mediated effects when tested on EGFR overexpressing cancer cell lines. These findings suggest a potential application of this high affinity molecule as a novel tool for anti-EGFR therapy.
Resumo:
Ten oxidosqualene cyclase inhibitors with high efficacy as cholesterol-lowering agents and of different chemical structure classes were evaluated as potential anticancer agents against human cancer cells from various tissue origins and nontumoral human-brain-derived endothelial cells. Inhibition of cancer cell growth was demonstrated at micromolar concentrations, comparable to the concentrations of statins necessary for antitumor effect. Human glioblastoma cells were among the most sensitive cells. These compounds were also able to decrease the proliferation of angiogenic brain-derived endothelial cells, as a model of tumor-induced neovasculation. Additive effects in human glioblastoma cells were also demonstrated for oxidosqualene cyclase inhibitors in combination with atorvastatin while maintaining selectivity against endothelial cells. Thus, not only statins targeting the 3-hydroxy-3-methylglutaryl coenzyme A reductase but also inhibitors of oxidosqualene cyclase decrease tumor growth, suggesting new therapeutic opportunities of combined anti-cholesterol agents for dual treatment of glioblastoma.
Resumo:
BACKGROUND: Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle). METHODS AND FINDINGS: We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. CONCLUSIONS: Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites.
Resumo:
The antibody display technology (ADT) such as phage display (PD) has substantially improved the production of monoclonal antibodies (mAbs) and Ab fragments through bypassing several limitations associated with the traditional approach of hybridoma technology. In the current study, we capitalized on the PD technology to produce high affinity single chain variable fragment (scFv) against tumor necrosis factor-alpha (TNF- α), which is a potent pro-inflammatory cytokine and plays important role in various inflammatory diseases and malignancies. To pursue production of scFv antibody fragments against human TNF- α, we performed five rounds of biopanning using stepwise decreased amount of TNF-α (1 to 0.1 μ g), a semi-synthetic phage antibody library (Tomlinson I + J) and TG1 cells. Antibody clones were isolated and selected through enzyme-linked immunosorbent assay (ELISA) screening. The selected scFv antibody fragments were further characterized by means of ELISA, PCR, restriction fragment length polymorphism (RFLP) and Western blot analyses as well as fluorescence microscopy and flow cytometry. Based upon binding affinity to TNF-α , 15 clones were selected out of 50 positive clones enriched from PD in vitro selection. The selected scFvs displayed high specificity and binding affinity with Kd values at nm range to human TNF-α . The immunofluorescence analysis revealed significant binding of the selected scFv antibody fragments to the Raji B lymphoblasts. The effectiveness of the selected scFv fragments was further validated by flow cytometry analysis in the lipopolysaccharide (LPS) treated mouse fibroblast L929 cells. Based upon these findings, we propose the selected fully human anti-TNF-α scFv antibody fragments as potential immunotherapy agents that may be translated into preclinical/clinical applications.
Resumo:
The potential and applicability of UHPSFC-MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC-MS/MS and UHPSFC-MS/MS in both ESI+ and ESI- modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC-MS/MS and for 32% in UHPSFC-MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC-MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations.
Resumo:
BACKGROUND: Patients with rheumatoid arthritis (RA) with an inadequate response to TNF antagonists (aTNFs) may switch to an alternative aTNF or start treatment from a different class of drugs, such as rituximab (RTX). It remains unclear in which clinical settings these therapeutic strategies offer most benefit. OBJECTIVE: To analyse the effectiveness of RTX versus alternative aTNFs on RA disease activity in different subgroups of patients. METHODS: A prospective cohort study of patients with RA who discontinued at least one aTNF and subsequently received either RTX or an alternative aTNF, nested within the Swiss RA registry (SCQM-RA) was carried out. The primary outcome, longitudinal improvement in 28-joint count Disease Activity Score (DAS28), was analysed using multivariate regression models for longitudinal data and adjusted for potential confounders. RESULTS: Of the 318 patients with RA included; 155 received RTX and 163 received an alternative aTNF. The relative benefit of RTX varied with the type of prior aTNF failure: when the motive for switching was ineffectiveness to previous aTNFs, the longitudinal improvement in DAS28 was significantly better with RTX than with an alternative aTNF (p = 0.03; at 6 months, -1.34 (95% CI -1.54 to -1.15) vs -0.93 (95% CI -1.28 to -0.59), respectively). When the motive for switching was other causes, the longitudinal improvement in DAS28 was similar for RTX and alternative aTNFs (p = 0.40). These results were not significantly modified by the number of previous aTNF failures, the type of aTNF switches, or the presence of co-treatment with a disease-modifying antirheumatic drug. CONCLUSION: This observational study suggests that in patients with RA who have stopped a previous aTNF treatment because of ineffectiveness changing to RTX is more effective than switching to an alternative aTNF.
Resumo:
Two published case reports showed that addition of risperidone (1 and 2 mg/d) to a clozapine treatment resulted in a strong increase of clozapine plasma levels. As clozapine is metabolized by cytochrome P450 isozymes, a study was initiated to assess the in vivo interaction potential of risperidone on various cytochrome P450 isozymes. Eight patients were phenotyped with dextromethorphan (CYP2D6), mephenytoin (CYP2C19), and caffeine (CYP1A2) before and after the introduction of risperidone. Before risperidone, all eight patients were phenotyped as being extensive metabolizers of CYP2D6 and CYP2C19. Risperidone at dosages between 2 and 6 mg/d does not appear to significantly inhibit CYP1A2 and CYP2C19 in vivo (median plasma paraxanthine/caffeine ratios before and after risperidone: 0.65, 0.69; p = 0.89; median urinary (S)/(R) mephenytoin ratios before and after risperidone:0.11, 0.12; p = 0.75). Although dextromethorphan metabolic ratio is significantly increased by risperidone (median urinary dextromethorphan/dextrorphan ratios before and after risperidone: 0.010, 0.018; p = 0.042), risperidone can be considered a weak in vivo CYP2D6 inhibitor, as this increase is modest and none of the eight patients was changed from an extensive to a poor metabolizer. The reported increase of clozapine concentrations by risperidone can therefore not be explained by an inhibition of CYP1A2, CYP2D6, CYP2C19 or by any combination of the three.
Resumo:
The application of microbial biocontrol agents for the control of fungal plant diseases and plant insect pests is a promising approach in the development of environmentally benign pest management strategies. The ideal biocontrol organism would be a bacterium or a fungus with activity against both, insect pests and fungal pathogens. Here we demonstrate the oral insecticidal activity of the root colonizing Pseudomonas fluorescens CHA0, which is so far known for its capacity to efficiently suppress fungal plant pathogens. Feeding assays with CHA0-sprayed leaves showed that this strain displays oral insecticidal activity and is able to efficiently kill larvae of three important insect pests. We further show data indicating that the Fit insect toxin produced by CHA0 and also metabolites controlled by the global regulator GacA contribute to oral insect toxicity.
Resumo:
Characterisation of nanoparticles (NP) based on size distribution, surface area, reactivity, and aggregation status of nanoparticles (NP) are of prime importance because they are usually closely related to toxicity. To date, most of the toxicity studies are quite time and money consuming. In the present study we report the oxidative properties of a panel of various NP (four Carbonaceous, nine Metal oxides, and one Metal as showed in Table 1) assessed with an acellular reactivity test measuring dithiothreitol (DTT) consumption (Sauvain et al. 2008). Such a test allows determining the ability of NP to catalyse the transfer of electrons from DTT to oxygen. DTT is used as a reductant species. NP were diluted and sonicated in Tween 80® to a final concentration of 50 g/mL. Printex 90 was diluted 5 times before doing the DTT assay because of its expected higher activity. Suspensions were characterised for NP size distribution by Nanoparticle Tracking Analysis (Nanosight©). Fresh solutions were incubated with DTT (100 μM). Aliquots were taken every 5 min and the remaining DTT was determined by reacting it with DTNB. The reaction rate was determined for NP suspensions and blank in parallel. The mean Brownian size distribution of NP agglomerates in suspension is presented in Table 1. D values correspond to 10th, and 50th percentiles of the particle diameters. All the NP agglomerated in Tween 80 with a D50 size corresponding to at least twice their primary size, except for Al2O3 (300 nm). The DTT test showed Printex 90 sample to be the most reactive one, followed by Diesel EPA and Nanotubes. Most of the metallic NP was nonresponding toward this test, except for NiO and Ag which reacted positively and ZnO which presented the most negative reactivity (see Figure 1). This last observation suggests that electron transfer between DTT and oxygen is hindered in presence of ZnO compared with the blank. Such "stabilization" could be attributable to ZnO dissolution and complexation between Zn2+ ions and DTT.
Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters.
Resumo:
New triruthenium-carbonyl clusters derivatized with glucose-modified bicyclophosphite ligands have been synthesized. These compounds were found to have cytostatic and cytotoxic activity and depending on the number of bicyclophosphite ligands, and could be tuned for either anti-cancer or specific anti-angiogenic activity. While some compounds had a broad cellular toxicity profile in several cell types others showed endothelial cell specific dose-dependent anti-proliferative and anti-migratory efficacy. A profound inhibition of angiogenesis was also observed in the in vivo chicken chorioallantoic membrane (CAM) model, and consequently, these new compounds have considerable potential in drug design, e.g. for the treatment of cancer.
Resumo:
OBJECTIVE: Minimizing unwarranted prescription of antibiotics remains an important objective. Because of the heterogeneity between units regarding patient mix and other characteristics, site-specific targets for reduction must be identified. Here we present a model to address the issue by means of an observational cohort study. SETTING: A tertiary, multidisciplinary, neonatal, and pediatric intensive care unit of a university teaching hospital. PATIENTS: All newborns and children present in the unit (n = 456) between September 1998 and March 1999. Reasons for admission included postoperative care after cardiac surgery, major neonatal or pediatric surgery, severe trauma, and medical conditions requiring critical care. METHODS: Daily recording of antibiotics given and of indications for initiation. After discontinuation, each treatment episode was assessed as to the presence or absence of infection. RESULTS: Of the 456 patients 258 (56.6%) received systemic antibiotics, amounting to 1815 exposure days (54.6%) during 3322 hospitalization days. Of these, 512 (28%) were prescribed as prophylaxis and 1303 for suspected infection. Treatment for suspected ventilator-associated pneumonia accounted for 616 (47%) of 1303 treatment days and suspected sepsis for 255 days (20%). Patients were classified as having no infection or viral infection during 552 (40%) treatment days. The average weekly exposure rate in the unit varied considerably during the 29-week study period (range: 40-77/100 hospitalization days). Patient characteristics did not explain this variation. CONCLUSION: In this unit the largest reduction in antibiotic treatment would result from measures assisting suspected ventilator-associated pneumonia to be ruled out and from curtailing extended prophylaxis.
Resumo:
Hypertension (HTN) is a major risk factor for cardiovascular mortality, yet only a small proportion of hypertensive individuals receive appropriate therapy and achieve target blood pressure (BP) values. Factors influencing the success of antihypertensive therapy include physicians' acceptance of guideline BP targets, the efficacy and tolerability of the drug regimen, and patient compliance and persistence with therapy. It is now well recognised that most hypertensive patients require at least two antihypertensive agents to achieve their target BP. However, complicated treatment regimens are a major contributory factor to poor patient compliance. The use of combination therapy for HTN offers a number of advantages over the use of monotherapy, including improved efficacy, as drug combinations with a synergistic mechanism of action can be used. This additive effect means that lower doses of the individual components can be used, which may translate into a decreased likelihood of adverse events. The use of single-pill combination therapy, in which two or more agents are combined in a single dosage form, offers all the benefits of free combination therapy (improved efficacy and tolerability over monotherapy) together with the added benefit of improved patient compliance because of the simplified treatment regimen. The use of single-pill combination therapy may also be associated with cost savings compared with the use of free combinations for reasons of cheaper drug costs, fewer physician visits and fewer hospitalisations for uncontrolled HTN and cardiovascular events. Thus, the use of single-pill combination therapy for HTN should help improve BP goal attainment through improved patient compliance, leading to reduced costs for cardiovascular-related care.
Resumo:
Aims: Therapeutic Drug Monitoring (TDM) is an established tool to optimize thepharmacotherapy with immunosupressants, antibiotics, antiretroviral agents, anticonvulsantsand psychotropic drugs. The TDM expert group of the Association ofNeuropsychopharmacolgy and Pharmacopsychiatry recommended clinical guidelinesfor TDM of psychotropic drugs in 2004 and in 2011. They allocate 4 levelsof recommendation based on studies reporting plasma concentrations and clinicaloutcomes. To evaluate the additional benefit for drugs without direct evidence forTDM and to verify the recommendation levels of the expert group the authorsbuilt a new rating scale. Methods: This rating scale included 28 items and wasdivided in 5 categories: Efficacy, toxicity, pharmacokinetics, patient characteristicsand cost effectiveness. A literature search was performed for 10 antidepressants,10 antipsychotics, 8 drugs used in the treatment of substance related disordersand lithium, thereafter, a comparison with the assessment of the TDMexpert group was carried out. Results: The antidepressants as well as the antipsychoticsshowed a high and significant correlation with the recommendations inthe consensus guidelines. However, meanderings could be detected for the drugsused in the therapy of substance related disorders, for which TDM is mostly notestablished yet. The result of the antidepressants and antipsychotics permits aclassification of the reachable points; upper 13 - TDM strongly recommended10 to 13 - TDM recommended, 8 to 10 - TDM useful and below 8 - TDMpotentially useful. Conclusion: These results suggest this rating scale is sensitiveto detect the appropriateness of TDM for drug treatment. For those drugs TDM isnot established a more objective estimation is possible, thus the scoring helps tofocus on the most likely drugs to require TDM.