175 resultados para Post-communist transition
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: South Africa (SA) is experiencing a rapid epidemiologic transition as a consequence of political, economic and social changes. In this study we described, based on hospital data, the mortality patterns of Non communicable Diseases (NCD), Communicable Diseases (CD), the NCD/CD ratios, and the trends of deaths. METHODS: We conducted a cross-sectional survey of all deaths occurring in several public hospitals in the Eastern Cape Province of SA between 2002 and 2006. Causes of deaths were coded according to the ICD 10 Edition. RESULTS: A total of 107380 admissions responded to the inclusion criteria between 2002 and 2006. The crude death rate was 4.3% (n=4566) with a mean age of 46±21 years and a sex ratio of 3.1 men (n=3453): 1 woman (n=1113). Out of all deaths, there were 62.9% NCD (n=2872) vs. 37.1% CD (n=1694) with NCD/CD ratio of 1.7. The ratio NCD/CD deaths in men was 1.3 (n=1951/1502) vs. NCD/CD deaths in women of 1.9 (n=735/378). The peak of deaths was observed in winter season. The majority of NCD deaths were at age of 30-64 years, whereas the highest rate of CD deaths was at age< 30 years. The trend of deaths including the majority of NCD, increased from 2002 to 2006. There was a tendency of increase in tuberculosis deaths, but a tendency of decrease in HIV/AIDS deaths was from 2002 to 2006. CONCLUSION: Non-communicable diseases are the leading causes of deaths in rural Eastern Cape province of SA facing Post-epidemiologic transition stages. We recommend overarching priority actions for the response to the Non-communicable Diseases: policy change, prevention, treatment, international cooperation, research, monitoring, accountability, and re-orientation of health systems.
Resumo:
Cellular metabolism is emerging as a potential fate determinant in cancer and stem cell biology, constituting a crucial regulator of the hematopoietic stem cell (HSC) pool [1-4]. The extremely low oxygen tension in the HSC microenvironment of the adult bone marrow forces HSCs into a low metabolic profile that is thought to enable their maintenance by protecting them from reactive oxygen species (ROS). Although HSC quiescence has for long been associated with low mitochondrial activity, as testified by the low rhodamine stain that marks primitive HSCs, we hypothesized that mitochondrial activation could be an HSC fate determinant in its own right. We thus set to investigate the implications of pharmacologically modulating mitochondrial activity during bone marrow transplantation, and have found that forcing mitochondrial activation in the post-transplant period dramatically increases survival. Specifically, we examined the mitochondrial content and activation profile of each murine hematopoietic stem and progenitor compartment. Long-term-HSCs (LT-HSC, Lin-cKit+Sca1+ (LKS) CD150+CD34-), short-term-HSCs (ST-HSC, LKS+150+34+), multipotent progenitors (MPPs, LKS+150-) and committed progenitors (PROG, Lin-cKit+Sca1-) display distinct mitochondrial profiles, with both mitochondrial content and activity increasing with differentiation. Indeed, we found that overall function of the hematopoietic progenitor and stem cell compartment can be resolved by mitochondrial activity alone, as illustrated by the fact that low mitochondrial activity LKS cells (TMRM low) can provide efficient long-term engraftment, while high mitochondrial activity LKS cells (TMRM high) cannot engraft in lethally irradiated mice. Moreover, low mitochondrial activity can equally predict efficiency of engraftment within the LT-HSC and ST-HSC compartments, opening the field to a novel method of discriminating a population of transitioning ST-HSCs that retain long-term engraftment capacity. Based on previous experience that a high-fat bone marrow microenvironment depletes short-term hematopoietic progenitors while conserving their long-term counterparts [5], we set to measure HSC mitochondrial activation in high-fat diet fed mice, known to decrease metabolic rate on a per cell basis through excess insulin/IGF-1 production. Congruently, we found lower mitochondrial activation as assessed by flow cytometry and RT-PCR analysis as well as a depletion of the short-term progenitor compartment in high fat versus control chow diet fed mice. We then tested the effects of a mitochondrial activator known to counteract the negative effects of high fat diet. We first analyzed the in vitro effect on HSC cell cycle kinetics, where no significant change in proliferation or division time was found. However, HSCs responded to the mitochondrial activator by increasing asynchrony, a behavior that is thought to directly correlate with asymmetric division [6]. As opposed to high-fat diet fed mice, mice fed with the mitochondrial activator showed an increase in ST-HSCs, while all the other hematopoietic compartments were comparable to mice fed on control diet. Given the dependency on short-term progenitors to rapidly reconstitute hematopoiesis following bone marrow transplantation, we tested the effect of pharmacological mitochondrial activation on the recovery of mice transplanted with a limiting HSC dose. Survival 3 weeks post-transplant was 80% in the treated group compared to 0% in the control group, as predicted by faster recovery of platelet and neutrophil counts. In conclusion, we have found that mitochondrial activation regulates the long-term to short-term HSC transition, unraveling mitochondrial modulation as a valuable drug target for post-transplant therapy. Identification of molecular pathways accountable for the metabolically mediated fate switch is currently ongoing.
Resumo:
This study examined the validity and reliability of a sequential "Run-Bike-Run" test (RBR) in age-group triathletes. Eight Olympic distance (OD) specialists (age 30.0 ± 2.0 years, mass 75.6 ± 1.6 kg, run VO2max 63.8 ± 1.9 ml· kg(-1)· min(-1), cycle VO2peak 56.7 ± 5.1 ml· kg(-1)· min(-1)) performed four trials over 10 days. Trial 1 (TRVO2max) was an incremental treadmill running test. Trials 2 and 3 (RBR1 and RBR2) involved: 1) a 7-min run at 15 km· h(-1) (R1) plus a 1-min transition to 2) cycling to fatigue (2 W· kg(-1) body mass then 30 W each 3 min); 3) 10-min cycling at 3 W· kg(-1) (Bsubmax); another 1-min transition and 4) a second 7-min run at 15 km· h(-1) (R2). Trial 4 (TT) was a 30-min cycle - 20-min run time trial. No significant differences in absolute oxygen uptake (VO2), heart rate (HR), or blood lactate concentration ([BLA]) were evidenced between RBR1 and RBR2. For all measured physiological variables, the limits of agreement were similar, and the mean differences were physiologically unimportant, between trials. Low levels of test-retest error (i.e. ICC <0.8, CV<10%) were observed for most (logged) measurements. However [BLA] post R1 (ICC 0.87, CV 25.1%), [BLA] post Bsubmax (ICC 0.99, CV 16.31) and [BLA] post R2 (ICC 0.51, CV 22.9%) were least reliable. These error ranges may help coaches detect real changes in training status over time. Moreover, RBR test variables can be used to predict discipline specific and overall TT performance. Cycle VO2peak, cycle peak power output, and the change between R1 and R2 (deltaR1R2) in [BLA] were most highly related to overall TT distance (r = 0.89, p < 0. 01; r = 0.94, p < 0.02; r = 0.86, p < 0.05, respectively). The percentage of TR VO2max at 15 km· h(-1), and deltaR1R2 HR, were also related to run TT distance (r = -0.83 and 0.86, both p < 0.05).
Resumo:
Cet article présente les risques liés aux transitians de soins et en particulier hospitalo-ambulatoires, qui, sans mesure d'accompagnement proactive, menacent le processus de rétablissement des personnes souffrant de troubles psychiatriques. En effet, les risques de rupture des soins et de réadmission sont davantage liés aux caractéristiques du système sociosanitaire qu'à celles du patient ou de la maladie. Des mesures d'accompagnement simples ne sont pas systématiques dans le domaine de la psychiatrie, alors même que ces patients sont particulièrement vulnérables dans les périodes de post-hospitalisation souvent synonymes de barrières au traitement. Le modèle de case management de transition développé à Lausanne est brièvement présenté et illustré au moyen d'une vignette clinique. Ses particularités sont notamment le recours systématique à certains outils soutenant le rétablissement et l'implication active du patient et de son entourage depuis l'hospitalisation jusqu'au retour dans la communauté.
Resumo:
UNLABELLED: The aim of this study was to compare perceived barriers to and the most preferred age for successful transition to adult health care between young people with chronic disorders who had not yet transferred from pediatric to adult health care (pre-transfer) and those who had already transferred (post-transfer). In a cross-sectional study, we compared 283 pre-transfer with 89 post-transfer young people, using a 28-item questionnaire that focused on perceived barriers to transition and beliefs about the most preferred age to transfer. Feeling at ease with the pediatrician was the most important barrier to successful transition in both groups, but was rated significantly higher in the pre-transfer compared to the post-transfer group (OR = 2.03, 95 %CI 1.12-3.71). Anxiety and lack of information were the next most important barriers, rated equally highly by the two groups (OR = 0.67, 95 %CI 0.35-1.28 and OR = 0.71, 95 %CI 0.36-1.38, respectively). More than 80 % of the respondents in both groups reported that 16-19 years was the most preferred age to transfer; more than half of all the respondents reported 18-19 years and older as the most preferred age. CONCLUSION: Better transition planning through the provision of regular and more detailed information about adult health-care providers and the transition process could reduce anxiety and contribute to a more positive attitude to overcome perceived barriers to transition from young people's perspective. Young people's preferences about transferring to adult health care provide a challenge to those children's hospitals that transfer to adult health care at a younger age.
Resumo:
The objective of this work was to develop an easily applicable technique and a standardized protocol for high-quality post-mortem angiography. This protocol should (1) increase the radiological interpretation by decreasing artifacts due to the perfusion and by reaching a complete filling of the vascular system and (2) ease and standardize the execution of the examination. To this aim, 45 human corpses were investigated by post-mortem computed tomography (CT) angiography using different perfusion protocols, a modified heart-lung machine and a new contrast agent mixture, specifically developed for post-mortem investigations. The quality of the CT angiographies was evaluated radiologically by observing the filling of the vascular system and assessing the interpretability of the resulting images and by comparing radiological diagnoses to conventional autopsy conclusions. Post-mortem angiography yielded satisfactory results provided that the volumes of the injected contrast agent mixture were high enough to completely fill the vascular system. In order to avoid artifacts due to the post-mortem perfusion, a minimum of three angiographic phases and one native scan had to be performed. These findings were taken into account to develop a protocol for quality post-mortem CT angiography that minimizes the risk of radiological misinterpretation. The proposed protocol is easy applicable in a standardized way and yields high-quality radiologically interpretable visualization of the vascular system in post-mortem investigations.
Resumo:
Patients with neurodisabilities require early management, continuing into adulthood. Thus, transition services were implemented in hospitals. To have a better support when they enter into adult life, it is useful to know the problems that they could face. The aim of this study is to evaluate their activities and to assess their insertion problems in the professional world. It is based on medical records of patients, aged 16 to 25 years, followed in the transition clinic of young adults in the Neurorehabilitation services of a tertiary centre. From 387 patients of the paediatric consultation, there are 267 patients (69%), included 224 with neurodevelopmental diseases and 43 with neuromuscular diseases. Nearly half of them (46.8%) were in a protected environment, 37.08% studied and 3.4% worked. Paradoxically, only 29.2% reported work problems. These results highlight the need to increase the integration of young adults with neuromotor disorders in the labor market.
Resumo:
INTRODUCTION AND HYPOTHESIS: This study aims to estimate fecal, urinary incontinence, and sexual function 6 years after an obstetrical anal sphincter tear. METHODS: Among 13,213 women who had a vaginal delivery of a cephalic singleton at term, 196 women sustained an anal sphincter tear. They were matched to 588 controls. Validated questionnaires grading fecal and urinary incontinence, and sexual dysfunction were completed by the participants. RESULTS: Severe fecal incontinence was more frequently reported by women who had sustained an anal sphincter tear compared to the controls. Women with an anal sphincter tear had no increased risk of urinary incontinence, but reported significantly more pain, difficulty with vaginal lubrication, and difficulty achieving orgasm compared to the controls. A fetal occiput posterior position during childbirth was an independent risk factor for both severe urinary incontinence and severe sexual dysfunction. CONCLUSIONS: Fecal incontinence is strongly associated with an anal sphincter tear. A fetal occiput posterior position represents a risk factor for urinary incontinence and sexual dysfunction.
Resumo:
BACKGROUND: To date, there is no quality assurance program that correlates patient outcome to perfusion service provided during cardiopulmonary bypass (CPB). A score was devised, incorporating objective parameters that would reflect the likelihood to influence patient outcome. The purpose was to create a new method for evaluating the quality of care the perfusionist provides during CPB procedures and to deduce whether it predicts patient morbidity and mortality. METHODS: We analysed 295 consecutive elective patients. We chose 10 parameters: fluid balance, blood transfused, Hct, ACT, PaO2, PaCO2, pH, BE, potassium and CPB time. Distribution analysis was performed using the Shapiro-Wilcoxon test. This made up the PerfSCORE and we tried to find a correlation to mortality rate, patient stay in the ICU and length of mechanical ventilation. Univariate analysis (UA) using linear regression was established for each parameter. Statistical significance was established when p < 0.05. Multivariate analysis (MA) was performed with the same parameters. RESULTS: The mean age was 63.8 +/- 12.6 years with 70% males. There were 180 CABG, 88 valves, and 27 combined CABG/valve procedures. The PerfSCORE of 6.6 +/- 2.4 (0-20), mortality of 2.7% (8/295), CPB time 100 +/- 41 min (19-313), ICU stay 52 +/- 62 hrs (7-564) and mechanical ventilation of 10.5 +/- 14.8 hrs (0-564) was calculated. CPB time, fluid balance, PaO2, PerfSCORE and blood transfused were significantly correlated to mortality (UA, p < 0.05). Also, CPB time, blood transfused and PaO2 were parameters predicting mortality (MA, p < 0.01). Only pH was significantly correlated for predicting ICU stay (UA). Ultrafiltration (UF) and CPB time were significantly correlated (UA, p < 0.01) while UF (p < 0.05) was the only parameter predicting mechanical ventilation duration (MA). CONCLUSIONS: CPB time, blood transfused and PaO2 are independent risk factors of mortality. Fluid balance, blood transfusion, PaO2, PerfSCORE and CPB time are independent parameters for predicting morbidity. PerfSCORE is a quality of perfusion measure that objectively quantifies perfusion performance.
Resumo:
L'ubiquitination est une modification des protéines conservée, consistant en l'addition de résidus « ubiquitine » et régulant le destin cellulaire des protéines. La protéine « TRAF-interacting protein » TRAIP (ou TRIP) est une ligase E3 qui catalyse l'étape finale de l'ubiquitination. TRAIP est conservé dans l'évolution et est nécessaire au développement des organismes puisque l'ablation de TRAIP conduit à la mort embryonnaire aussi bien de la drosophile que de la souris. De plus, la réduction de l'expression de TRAIP dans des kératinocytes épidermiques humains réprime la prolifération cellulaire et induit un arrêt du cycle cellulaire en phase Gl, soulignant le lien étroit entre TRAIP et la prolifération cellulaire. Comme les mécanismes de régulation de la prolifération jouent un rôle majeur dans l'homéostasie de la peau, il est important de caractériser la fonction de TRAIP dans ces mécanismes. En utilisant des approches in vitro, nous avons déterminé que la protéine TRAIP est instable, modifiée par l'addition d'ubiquitine et ayant une demi-vie d'environ 4 heures. Nos analyses ont également révélé que l'expression de TRAIP est dépendante du cycle cellulaire, atteignant un pic d'expression en phase G2/M et que l'induction de son expression s'effectue principalement au cours de la transition Gl/S. Nous avons identifié le facteur de transcription E2F1 comme en étant le responsable, en régulant directement le promoteur de TRAIP. Aussi, TRAIP endogène ou surexprimée est surtout localisée au niveau du nucléole, une organelle nucléaire qui est désassemblée pendant la division cellulaire. Pour examiner la localisation subcellulaire de TRAIP pendant la mitose, nous avons imagé la protéine TRAIP fusionnée à une protéine fluorescente, à l'intérieur de cellules vivantes nommées HeLa, à l'aide d'un microscope confocal. Dans ces conditions, TRAIP est majoritairement localisée autour des chromosomes en début de mitose, puis est arrangée au niveau de l'ADN chromosomique en fin de mitose. La détection de TRAIP endogène à l'aide d'un anticorps spécifique a confirmé cette localisation. Enfin, l'inactivation de TRAIP dans les cellules HeLa par interférence ARN a inhibé leur capacité à s'arrêter en milieu de mitose. Nos résultats suggèrent que le mécanisme sous-jacent peut être lié au point de contrôle de l'assemblage du fuseau mitotique. - Ubiquitination of proteins is a post-translational modification which decides the cellular fate of the protein. The TRAF-interacting protein (TRAIP, TRIP) functions as an E3 ubiquitin ligase mediating addition of ubiquitin moieties to proteins. TRAIP interacts with the deubiquitinase CYLD, a tumor suppressor whose functional inactivation leads to skin appendage tumors. TRAIP is required for early embryonic development since removal of TRAIP either in Drosophila or mice by mutations or knock¬out is lethal due to aberrant regulation of cell proliferation and apoptosis. Furthermore, shRNA- mediated knock-down of TRAIP in human epidermal keratinocytes (HEK) repressed cell proliferation and induced a Gl/S phase block in the cell cycle. Additionally, TRAIP expression is strongly down- regulated during keratinocyte differentiation supporting the notion of a tight link between TRAIP and cell proliferation. We thus examined the biological functions of TRAIP in epithelial cell proliferation. Using an in vitro approach, we could determine that the TRAIP protein is unstable, modified by addition of ubiquitin moieties after translation and exhibits a half-life of 3.7+/-1-6 hours. Our analysis revealed that the TRAIP expression is modulated in a cell-cycle dependent manner, reaching a maximum expression level in G2/M phases. In addition, the expression of TRAIP was particularly activated during Gl/S phase transition and we could identify the transcription factor E2F1 as an activator of the TRAIP gene promoter. Both endogenous and over-expressed TRAIP mainly localized to the nucleolus, a nuclear organelle which is disassembled during cell division. To examine the subcellular localization of TRAIP during M phase, we performed confocal live-cell imaging of a functional fluorescent protein TRAIP-GFP in HeLa cells. TRAIP was distributed in the cytoplasm and accumulated around mitotic chromosomes in pro- and meta-phasic cells. TRAIP was then confined to chromosomal DNA location in anaphase and later phases of mitosis. Immune-detection of endogenous TRAIP protein confirmed its particular localization in mitosis. Finally, inactivating TRAIP expression in HeLa cells using RNA interference abrogated the cells ability to stop or delay mitosis progression. Our results suggested that TRAIP may involve the spindle assembly checkpoint.
Resumo:
INTRODUCTION: Therapeutic hypothermia (TH) is often used to treat out-of-hospital cardiac arrest (OHCA) patients who also often simultaneously receive insulin for stress-induced hyperglycaemia. However, the impact of TH on systemic metabolism and insulin resistance in critical illness is unknown. This study analyses the impact of TH on metabolism, including the evolution of insulin sensitivity (SI) and its variability, in patients with coma after OHCA. METHODS: This study uses a clinically validated, model-based measure of SI. Insulin sensitivity was identified hourly using retrospective data from 200 post-cardiac arrest patients (8,522 hours) treated with TH, shortly after admission to the intensive care unit (ICU). Blood glucose and body temperature readings were taken every one to two hours. Data were divided into three periods: 1) cool (T <35°C); 2) an idle period of two hours as normothermia was re-established; and 3) warm (T >37°C). A maximum of 24 hours each for the cool and warm periods was considered. The impact of each condition on SI is analysed per cohort and per patient for both level and hour-to-hour variability, between periods and in six-hour blocks. RESULTS: Cohort and per-patient median SI levels increase consistently by 35% to 70% and 26% to 59% (P <0.001) respectively from cool to warm. Conversely, cohort and per-patient SI variability decreased by 11.1% to 33.6% (P <0.001) for the first 12 hours of treatment. However, SI variability increases between the 18th and 30th hours over the cool to warm transition, before continuing to decrease afterward. CONCLUSIONS: OCHA patients treated with TH have significantly lower and more variable SI during the cool period, compared to the later warm period. As treatment continues, SI level rises, and variability decreases consistently except for a large, significant increase during the cool to warm transition. These results demonstrate increased resistance to insulin during mild induced hypothermia. Our study might have important implications for glycaemic control during targeted temperature management.
Resumo:
Population genetic differentiation characterizes the repartition of alleles among populations. It is commonly thought that genetic differentiation measures, such as GST and D, should be near zero when allele frequencies are close to their expected value in panmictic populations, and close to one when they are close to their expected value in isolated populations. To analyse those properties, we first derive analytically a reference function f of known parameters that describes how important features of genetic differentiation (e.g. gene diversity, proportion of private alleles, frequency of the most common allele) are close to their expected panmictic and isolation value. We find that the behaviour of function f differs according to three distinct mutation regimes defined by the scaled mutation rate and the number of populations. Then, we compare GST and D to f, and demonstrate that their signal of differentiation strongly depends on the mutation regime. In particular, we show that D captures well the variations of genetic diversity when mutation is weak, otherwise it overestimates it when panmixia is not met. GST detects population differentiation when mutation is intermediate but has a low sensitivity to the variations of genetic diversity when mutation is weak. When mutation is strong the domain of sensitivity of both measures are altered. Finally, we also point out the importance of the number of populations on genetic differentiation measures, and provide recommendations for the use of GST and D.