49 resultados para Polycyclic Hydrocarbons, Aromatic
em Université de Lausanne, Switzerland
Resumo:
Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24-7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5-119.8 ng m(-3) during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure.
Resumo:
A Gram-negative, rod-shaped, aerobic bacterium, designated strain RP007(T), was isolated from a polycyclic aromatic hydrocarbon-contaminated soil in New Zealand. Two additional strains were recovered from a compost heap in Belgium (LMG 18808) and from the rhizosphere of maize in the Netherlands (LMG 24204). The three strains had virtually identical 16S rRNA gene sequences and whole-cell protein profiles, and they were identified as members of the genus Burkholderia, with Burkholderia phenazinium as their closest relative. Strain RP007(T) had a DNA G+C content of 63.5 mol% and could be distinguished from B. phenazinium based on a range of biochemical characteristics. Strain RP007(T) showed levels of DNA-DNA relatedness towards the type strain of B. phenazinium and those of other recognized Burkholderia species of less than 30 %. The results of 16S rRNA gene sequence analysis, DNA-DNA hybridization experiments and physiological and biochemical tests allowed the differentiation of strain RP007(T) from all recognized species of the genus Burkholderia. Strains RP007(T), LMG 18808 and LMG 24204 are therefore considered to represent a single novel species of the genus Burkholderia, for which the name Burkholderia sartisoli sp. nov. is proposed. The type strain is RP007(T) (=LMG 24000(T) =CCUG 53604(T) =ICMP 13529(T)).
Resumo:
The aim of this study was to identify genes involved in solute and matric stress mitigation in the polycyclic aromatic hydrocarbon (PAH)-degrading Novosphingobium sp. strain LH128. The genes were identified using plasposon mutagenesis and by selection of mutants that showed impaired growth in a medium containing 450 mM NaCl as a solute stress or 10% (wt/vol) polyethylene glycol (PEG) 6000 as a matric stress. Eleven and 14 mutants showed growth impairment when exposed to solute and matric stresses, respectively. The disrupted sequences were mapped on a draft genome sequence of strain LH128, and the corresponding gene functions were predicted. None of them were shared between solute and matric stress-impacted mutants. One NaCl-affected mutant (i.e., NA7E1) with a disruption in a gene encoding a putative outer membrane protein (OpsA) was susceptible to lower NaCl concentrations than the other mutants. The growth of NA7E1 was impacted by other ions and nonionic solutes and by sodium dodecyl sulfate (SDS), suggesting that opsA is involved in osmotic stress mitigation and/or outer membrane stability in strain LH128. NA7E1 was also the only mutant that showed reduced growth and less-efficient phenanthrene degradation in soil compared to the wild type. Moreover, the survival of NA7E1 in soil decreased significantly when the moisture content was decreased but was unaffected when soluble solutes from sandy soil were removed by washing. opsA appears to be important for the survival of strain LH128 in soil, especially in the case of reduced moisture content, probably by mitigating the effects of solute stress and retaining membrane stability.
Resumo:
Les tumeurs malignes des cavités naso-sinusiennes (CNS) représentent environ 3% des cancers ORL. La poussière de bois est reconnue comme cancérigène pour l'homme (IARC, classe 1A) et la maladie professionnelle formellement identifiée est le CNS ou le cancer de l'ethmoïde. L'adénocarcinome des CNS est une maladie professionnelle admise chez certains travailleurs spécialisés tels les menuisiers et les ébénistes. Selon les enquêtes WOODEX dans les 25 états membres de UE en 2006, environ 3.6 millions de travailleurs sont exposés par voie respiratoire à la poussière de bois, soit 2% de la population active. En France, 307 000 travailleurs sont exposés, et il y a environ 200 cas de cancers sino-nasaux reconnus comme maladie professionnelle par année. La forte proportion de travailleurs du bois développant un adénocarcinome des CNS a suggéré diverses pistes, tel que le tanin pour les bois durs, le formaldéhyde pour les contre-plaqués et le benzo(a)pyrène produit par le bois surchauffé. Il est reconnu que le tanin ne provoque pas de cancer dans l'exposition à la poussière de thé. Le formaldéhyde est un irritant mais il est aussi classé cancérogène. La piste des hydrocarbures aromatiques polycycliques (HAP) cancérogènes provoqués par le bois surchauffé est séduisante. Nous avons étudié leur teneur en fonction des opérations pratiquées sur le bois en cabine d'expérimentation. Les matériaux testés sont du sapin brut, du chêne et chêne imprégné de polyuréthane. La poussière de bois contient des HAP au niveau du µg/g ou ppm. Le bois imprégné de vernis PU produit 100 fois plus de HAP que le bois brut lors des opérations de ponçage.
Resumo:
L'ANSES vient de publier un rapport formulant un certain nombre de recommandations pour prévenir les divers risques affectant la santé des travailleurs exposés aux bitumes. Au-delà du potentiel cancérogène des produits bitumineux et de leurs émissions, les experts de l'ANSES ont mis en évidence dans leur expertise l'existence d'effets respiratoires et suspectent également des effets cardiovasculaires et immunotoxiques. Selon les postes de travail, les niveaux d'exposition sont plus ou moins importants. La température est également un facteur de variation de l'émission de fumée, et par conséquent de l'exposition des travailleurs au risque chimique par voie d'inhalation. Le rapport souligne également la question du risque d'exposition par voie cutanée, à l'heure actuelle encore peu considéré. Enfin, les activités de rabotage et de recyclage de plus en plus pratiquées doivent faire l'objet d'une attention particulière en raison des matériaux précédemment utilisés qui peuvent contenir de l'amiante, des silices, d'anciens bitumes soufrés...
Resumo:
In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (approximately 4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstrates nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable.
Resumo:
Wood dust is recognised as a human carcinogen, based on the strong association of wood dust exposure and the elevated risk of malignant tumours of the nasal cavity and paranasal sinuses [sino-nasal cancer (SNC)]. The study aimed to assess genetic damage in workers exposed to wood dust using biomarkers in both buccal and nasal cells that reflect genome instability events, cellular proliferation and cell death frequencies. Nasal and buccal epithelial cells were collected from 31 parquet layers, installers, carpenters and furniture workers (exposed group) and 19 non-exposed workers located in Switzerland. Micronucleus (MN) frequencies were scored in nasal and buccal cells collected among woodworkers. Other nuclear anomalies in buccal cells were measured through the use of the buccal micronucleus cytome assay. MN frequencies in nasal and buccal cells were significantly higher in the exposed group compared to the non-exposed group; odds ratio for nasal cells 3.1 [95% confidence interval (CI) 1.8-5.1] and buccal cells 1.8 (95% CI 1.3-2.4). The exposed group had higher frequencies of cells with nuclear buds, karyorrhectic, pyknotic, karyolytic cells and a decrease in the frequency of basal, binucleated and condensed cells compared to the non-exposed group. Our study confirms that woodworkers have an elevated risk for chromosomal instability in cells of the aerodigestive tract. The MN assay in nasal cells may become a relevant biomonitoring tool in the future for early detection of SNC risk. Future studies should seek to standardise the protocol for MN frequency in nasal cells similar to that for MN in buccal cells.