137 resultados para Plant indicator species

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tight link between variation in plant functional traits and habitat suitability for some species, but not for others. Our contrasting results pave the way towards a better understanding of how species cope with varying habitat conditions and demonstrate that habitat suitability models can provide meaningful descriptions of the functional niche in some cases, but not in others.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Summary Due to their conic shape and the reduction of area with increasing elevation, mountain ecosystems were early identified as potentially very sensitive to global warming. Moreover, mountain systems may experience unprecedented rates of warming during the next century, two or three times higher than that records of the 20th century. In this context, species distribution models (SDM) have become important tools for rapid assessment of the impact of accelerated land use and climate change on the distribution plant species. In my study, I developed and tested new predictor variables for species distribution models (SDM), specific to current and future geographic projections of plant species in a mountain system, using the Western Swiss Alps as model region. Since meso- and micro-topography are relevant to explain geographic patterns of plant species in mountain environments, I assessed the effect of scale on predictor variables and geographic projections of SDM. I also developed a methodological framework of space-for-time evaluation to test the robustness of SDM when projected in a future changing climate. Finally, I used a cellular automaton to run dynamic simulations of plant migration under climate change in a mountain landscape, including realistic distance of seed dispersal. Results of future projections for the 21st century were also discussed in perspective of vegetation changes monitored during the 20th century. Overall, I showed in this study that, based on the most severe A1 climate change scenario and realistic dispersal simulations of plant dispersal, species extinctions in the Western Swiss Alps could affect nearly one third (28.5%) of the 284 species modeled by 2100. With the less severe 61 scenario, only 4.6% of species are predicted to become extinct. However, even with B1, 54% (153 species) may still loose more than 80% of their initial surface. Results of monitoring of past vegetation changes suggested that plant species can react quickly to the warmer conditions as far as competition is low However, in subalpine grasslands, competition of already present species is probably important and limit establishment of newly arrived species. Results from future simulations also showed that heavy extinctions of alpine plants may start already in 2040, but the latest in 2080. My study also highlighted the importance of fine scale and regional. assessments of climate change impact on mountain vegetation, using more direct predictor variables. Indeed, predictions at the continental scale may fail to predict local refugees or local extinctions, as well as loss of connectivity between local populations. On the other hand, migrations of low-elevation species to higher altitude may be difficult to predict at the local scale. Résumé La forme conique des montagnes ainsi que la diminution de surface dans les hautes altitudes sont reconnues pour exposer plus sensiblement les écosystèmes de montagne au réchauffement global. En outre, les systèmes de montagne seront sans doute soumis durant le 21ème siècle à un réchauffement deux à trois fois plus rapide que celui mesuré durant le 20ème siècle. Dans ce contexte, les modèles prédictifs de distribution géographique de la végétation se sont imposés comme des outils puissants pour de rapides évaluations de l'impact des changements climatiques et de la transformation du paysage par l'homme sur la végétation. Dans mon étude, j'ai développé de nouvelles variables prédictives pour les modèles de distribution, spécifiques à la projection géographique présente et future des plantes dans un système de montagne, en utilisant les Préalpes vaudoises comme zone d'échantillonnage. La méso- et la microtopographie étant particulièrement adaptées pour expliquer les patrons de distribution géographique des plantes dans un environnement montagneux, j'ai testé les effets d'échelle sur les variables prédictives et sur les projections des modèles de distribution. J'ai aussi développé un cadre méthodologique pour tester la robustesse potentielle des modèles lors de projections pour le futur. Finalement, j'ai utilisé un automate cellulaire pour simuler de manière dynamique la migration future des plantes dans le paysage et dans quatre scénarios de changement climatique pour le 21ème siècle. J'ai intégré dans ces simulations des mécanismes et des distances plus réalistes de dispersion de graines. J'ai pu montrer, avec les simulations les plus réalistes, que près du tiers des 284 espèces considérées (28.5%) pourraient être menacées d'extinction en 2100 dans le cas du plus sévère scénario de changement climatique A1. Pour le moins sévère des scénarios B1, seulement 4.6% des espèces sont menacées d'extinctions, mais 54% (153 espèces) risquent de perdre plus 80% de leur habitat initial. Les résultats de monitoring des changements de végétation dans le passé montrent que les plantes peuvent réagir rapidement au réchauffement climatique si la compétition est faible. Dans les prairies subalpines, les espèces déjà présentes limitent certainement l'arrivée de nouvelles espèces par effet de compétition. Les résultats de simulation pour le futur prédisent le début d'extinctions massives dans les Préalpes à partir de 2040, au plus tard en 2080. Mon travail démontre aussi l'importance d'études régionales à échelle fine pour évaluer l'impact des changements climatiques sur la végétation, en intégrant des variables plus directes. En effet, les études à échelle continentale ne tiennent pas compte des micro-refuges, des extinctions locales ni des pertes de connectivité entre populations locales. Malgré cela, la migration des plantes de basses altitudes reste difficile à prédire à l'échelle locale sans modélisation plus globale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a new indicator taxa approach to the prediction of climate change effects on biodiversity at the national level in Switzerland. As indicators, we select a set of the most widely distributed species that account for 95% of geographical variation in sampled species richness of birds, butterflies, and vascular plants. Species data come from a national program designed to monitor spatial and temporal trends in species richness. We examine some opportunities and limitations in using these data. We develop ecological niche models for the species as functions of both climate and land cover variables. We project these models to the future using climate predictions that correspond to two IPCC 3rd assessment scenarios for the development of 'greenhouse' gas emissions. We find that models that are calibrated with Swiss national monitoring data perform well in 10-fold cross-validation, but can fail to capture the hot-dry end of environmental gradients that constrain some species distributions. Models for indicator species in all three higher taxa predict that climate change will result in turnover in species composition even where there is little net change in predicted species richness. Indicator species from high elevations lose most areas of suitable climate even under the relatively mild B2 scenario. We project some areas to increase in the number of species for which climate conditions are suitable early in the current century, but these areas become less suitable for a majority of species by the end of the century. Selection of indicator species based on rank prevalence results in a set of models that predict observed species richness better than a similar set of species selected based on high rank of model AUC values. An indicator species approach based on selected species that are relatively common may facilitate the use of national monitoring data for predicting climate change effects on the distribution of biodiversity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Environmental gradients have been postulated to generate patterns of diversity and diet specialization, in which more stable environments, such as tropical regions, should promote higher diversity and specialization. Using field sampling and phylogenetic analyses of butterfly fauna over an entire alpine region, we show that butterfly specialization (measured as the mean phylogenetic distance between utilized host plants) decreases at higher elevations, alongside a decreasing gradient of plant diversity. Consistent with current hypotheses on the relationship between biodiversity and the strength of species interactions, we experimentally show that a higher level of generalization at high elevations is associated with lower levels of plant resistance: across 16 pairs of plant species, low-elevation plants were more resistant vis-à-vis their congeneric alpine relatives. Thus, the links between diversity, herbivore diet specialization, and plant resistance along an elevation gradient suggest a causal relationship analogous to that hypothesized along latitudinal gradients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim Understanding the stability of realised niches is crucial for predicting the responses of species to climate change. One approach is to evaluate the niche differences of populations of the same species that occupy regions that are geographically disconnected. Here, we assess niche conservatism along thermal gradients for 26 plant species with a disjunct distribution between the Alps and the Arctic. Location European Alps and Norwegian Finnmark. Methods We collected a comprehensive dataset of 26 arctic-alpine plant occurrences in two regions. We assessed niche conservatism through a multi-species comparison and analysed species rankings at cold and warm thermal limits along two distinct gradients corresponding to (1) air temperatures at 2 meters above ground level and (2) elevation distances to the treeline (TLD) for the two regions. We assessed whether observed relationships were close to those predicted under thermal limit conservatism. Results We found a weak similarity in species ranking at the warm thermal limits. The range of warm thermal limits for the 26 species was much larger in the Alps than in Finnmark. We found a stronger similarity in species ranking and correspondence at the cold thermal limit along the gradients of 2-m temperature and TLD. Yet, along the 2-m temperature gradient, the cold thermal limits of species in the Alps were lower on average than those in Finnmark. Main conclusion We found low conservatism of the warm thermal limits but a stronger conservatism of the cold thermal limits. We suggest that biotic interactions at the warm thermal limit likely modulate species responses more strongly than at the cold limit. The differing biotic context between the two regions is likely responsible for the observed differences in realised niches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim This study compares the direct, macroecological approach (MEM) for modelling species richness (SR) with the more recent approach of stacking predictions from individual species distributions (S-SDM). We implemented both approaches on the same dataset and discuss their respective theoretical assumptions, strengths and drawbacks. We also tested how both approaches performed in reproducing observed patterns of SR along an elevational gradient.Location Two study areas in the Alps of Switzerland.Methods We implemented MEM by relating the species counts to environmental predictors with statistical models, assuming a Poisson distribution. S-SDM was implemented by modelling each species distribution individually and then stacking the obtained prediction maps in three different ways - summing binary predictions, summing random draws of binomial trials and summing predicted probabilities - to obtain a final species count.Results The direct MEM approach yields nearly unbiased predictions centred around the observed mean values, but with a lower correlation between predictions and observations, than that achieved by the S-SDM approaches. This method also cannot provide any information on species identity and, thus, community composition. It does, however, accurately reproduce the hump-shaped pattern of SR observed along the elevational gradient. The S-SDM approach summing binary maps can predict individual species and thus communities, but tends to overpredict SR. The two other S-SDM approaches the summed binomial trials based on predicted probabilities and summed predicted probabilities - do not overpredict richness, but they predict many competing end points of assembly or they lose the individual species predictions, respectively. Furthermore, all S-SDM approaches fail to appropriately reproduce the observed hump-shaped patterns of SR along the elevational gradient.Main conclusions Macroecological approach and S-SDM have complementary strengths. We suggest that both could be used in combination to obtain better SR predictions by following the suggestion of constraining S-SDM by MEM predictions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks io investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages' characteristics such as species richness or functional attributes. I showed that species richness could be modelled efficiently and that the resulting prediction gave a more realistic estimate of the number of species than when obtaining it by stacking outputs of single species distribution models. Regarding the prediction of functional characteristics (plant height, leaf surface, seed mass) of plant assemblages, mean and extreme values of functional traits were better predictable than indices reflecting the diversity of traits in the community. This approach proved interesting to understand which environmental conditions influence particular aspects of the vegetation functioning. It could also be useful to predict climate change impacts on the vegetation. In the last part of my thesis, I studied the capacity of stacked species distribution models to predict the plant assemblages. I showed that this method tended to over-predict the number of species and that the composition of the community was not predicted exactly either. Finally, I combined the results of macro- ecological models obtained in the preceding chapters with stacked species distribution models and showed that this approach reduced significantly the number of species predicted and that the prediction of the composition is also ameliorated in some cases. These results showed that this method is promising. It needs now to be tested on further data sets. - Comprendre la manière dont les plantes se répartissent dans l'environnement et s'organisent en communauté est une question primordiale dans le contexte actuel de changements globaux. Cette connaissance peut nous aider à sauvegarder la diversité des espèces et les écosystèmes. Des méthodes statistiques nous permettent de prédire la distribution des espèces de plantes dans l'espace géographique et dans le temps. Ces modèles de distribution d'espèces, relient les occurrences d'une espèce avec des variables environnementales pour décrire sa distribution potentielle. Cette méthode a fait ses preuves pour ce qui est de la prédiction d'espèces individuelles. Plus récemment plusieurs tentatives de cumul de modèles d'espèces individuelles ont été réalisées afin de prédire la composition des communautés végétales. Le premier objectif de mon travail est d'améliorer les modèles de distribution en testant l'importance de nouvelles variables prédictives. Parmi différentes variables édaphiques, le pH et la teneur en azote du sol se sont avérés des facteurs non négligeables pour prédire la distribution des plantes. Je démontre aussi dans un second chapitre que les prédicteurs environnementaux à fine résolution permettent de refléter les conditions micro-topographiques subies par les plantes mais qu'ils doivent encore être améliorés avant de pouvoir être employés de manière efficace dans les modèles. Le deuxième objectif de ce travail consistait à étudier le développement de modèles prédictifs pour des attributs des communautés végétales tels que, par exemple, la richesse en espèces rencontrée à chaque point. Je démontre qu'il est possible de prédire par ce biais des valeurs de richesse spécifiques plus réalistes qu'en sommant les prédictions obtenues précédemment pour des espèces individuelles. J'ai également prédit dans l'espace et dans le temps des caractéristiques de la végétation telles que sa hauteur moyenne, minimale et maximale. Cette approche peut être utile pour comprendre quels facteurs environnementaux promeuvent différents types de végétation ainsi que pour évaluer les changements à attendre au niveau de la végétation dans le futur sous différents régimes de changements climatiques. Dans une troisième partie de ma thèse, j'ai exploré la possibilité de prédire les assemblages de plantes premièrement en cumulant les prédictions obtenues à partir de modèles individuels pour chaque espèce. Cette méthode a le défaut de prédire trop d'espèces par rapport à ce qui est observé en réalité. J'ai finalement employé le modèle de richesse en espèce développé précédemment pour contraindre les résultats du modèle d'assemblage de plantes. Cela a permis l'amélioration des modèles en réduisant la sur-prédiction et en améliorant la prédiction de la composition en espèces. Cette méthode semble prometteuse mais de nouveaux tests sont nécessaires pour bien évaluer ses capacités.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rare species have restricted geographic ranges, habitat specialization, and/or small population sizes. Datasets on rare species distribution usually have few observations, limited spatial accuracy and lack of valid absences; conversely they provide comprehensive views of species distributions allowing to realistically capture most of their realized environmental niche. Rare species are the most in need of predictive distribution modelling but also the most difficult to model. We refer to this contrast as the "rare species modelling paradox" and propose as a solution developing modelling approaches that deal with a sufficiently large set of predictors, ensuring that statistical models aren't overfitted. Our novel approach fulfils this condition by fitting a large number of bivariate models and averaging them with a weighted ensemble approach. We further propose that this ensemble forecasting is conducted within a hierarchic multi-scale framework. We present two ensemble models for a test species, one at regional and one at local scale, each based on the combination of 630 models. In both cases, we obtained excellent spatial projections, unusual when modelling rare species. Model results highlight, from a statistically sound approach, the effects of multiple drivers in a same modelling framework and at two distinct scales. From this added information, regional models can support accurate forecasts of range dynamics under climate change scenarios, whereas local models allow the assessment of isolated or synergistic impacts of changes in multiple predictors. This novel framework provides a baseline for adaptive conservation, management and monitoring of rare species at distinct spatial and temporal scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Given the rate of projected environmental change for the 21st century, urgent adaptation and mitigation measures are required to slow down the on-going erosion of biodiversity. Even though increasing evidence shows that recent human-induced environmental changes have already triggered species' range shifts, changes in phenology and species' extinctions, accurate projections of species' responses to future environmental changes are more difficult to ascertain. This is problematic, since there is a growing awareness of the need to adopt proactive conservation planning measures using forecasts of species' responses to future environmental changes. There is a substantial body of literature describing and assessing the impacts of various scenarios of climate and land-use change on species' distributions. Model predictions include a wide range of assumptions and limitations that are widely acknowledged but compromise their use for developing reliable adaptation and mitigation strategies for biodiversity. Indeed, amongst the most used models, few, if any, explicitly deal with migration processes, the dynamics of population at the "trailing edge" of shifting populations, species' interactions and the interaction between the effects of climate and land-use. In this review, we propose two main avenues to progress the understanding and prediction of the different processes A occurring on the leading and trailing edge of the species' distribution in response to any global change phenomena. Deliberately focusing on plant species, we first explore the different ways to incorporate species' migration in the existing modelling approaches, given data and knowledge limitations and the dual effects of climate and land-use factors. Secondly, we explore the mechanisms and processes happening at the trailing edge of a shifting species' distribution and how to implement them into a modelling approach. We finally conclude this review with clear guidelines on how such modelling improvements will benefit conservation strategies in a changing world. (c) 2007 Rubel Foundation, ETH Zurich. Published by Elsevier GrnbH. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Questions Soil properties have been widely shown to influence plant growth and distribution. However, the degree to which edaphic variables can improve models based on topo-climatic variables is still unclear. In this study, we tested the roles of seven edaphic variables, namely (1) pH; (2) the content of nitrogen and of (3) phosphorus; (4) silt; (5) sand; (6) clay and (7) carbon-to-nitrogen ratio, as predictors of species distribution models in an edaphically heterogeneous landscape. We also tested how the respective influence of these variables in the models is linked to different ecological and functional species characteristics. Location The Western Alps, Switzerland. Methods With four different modelling techniques, we built models for 115 plant species using topo-climatic variables alone and then topo-climatic variables plus each of the seven edaphic variables, one at a time. We evaluated the contribution of each edaphic variable by assessing the change in predictive power of the model. In a second step, we evaluated the importance of the two edaphic variables that yielded the largest increase in predictive power in one final set of models for each species. Third, we explored the change in predictive power and the importance of variables across plant functional groups. Finally, we assessed the influence of the edaphic predictors on the prediction of community composition by stacking the models for all species and comparing the predicted communities with the observed community. Results Among the set of edaphic variables studied, pH and nitrogen content showed the highest contributions to improvement of the predictive power of the models, as well as the predictions of community composition. When considering all topo-climatic and edaphic variables together, pH was the second most important variable after degree-days. The changes in model results caused by edaphic predictors were dependent on species characteristics. The predictions for the species that have a low specific leaf area, and acidophilic preferences, tolerating low soil pH and high humus content, showed the largest improvement by the addition of pH and nitrogen in the model. Conclusions pH was an important predictor variable for explaining species distribution and community composition of the mountain plants considered in our study. pH allowed more precise predictions for acidophilic species. This variable should not be neglected in the construction of species distribution models in areas with contrasting edaphic conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silene dioica is a diploid, dioecious, perennial, insect-pollinated herb and part of the deciduous phase of primary succession in Skeppsvik Archipelago, Gulf of Bothnia, Sweden. These islands are composed of material deposited and left underwater by melting ice at the end of the last ice age. A rapid and relatively constant rate of land uplift of 0.9 cm per year continually creates new islands available for colonization by plants. Because the higher deposits appear first, islands differ in age. Because it is possible to estimate the ages of islands and populations of plant species belonging to early stages of succession, the genetic dynamics occurring within an age-structured metapopulation can be investigated in this archipelago. Fifty-two island populations of S. dioica of known ages, sizes, and distances from each other were studied through electrophoretic data. A number of factors increase the degree of genetic differentiation among these island populations relative to an island model at equilibrium. Newly founded populations were more differentiated than those of intermediate age, which suggests that colonization dynamics increase genetic variance among populations. The very old populations, which decrease in size as they approach extinction, were more differentiated than intermediate-aged populations. Isolation by distance occurs in this system. Colonizers are likely to come from more than one source, and the migrant pool model best explains colonization events in the archipelago. Degree of environmental exposure also affects population differentiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction of the recombinant cosmid pME3090 into Pseudomonas fluorescens strain CHAO, a good biocontrol agent of various diseases caused by soilborne pathogens, increased three- to five-fold the production of the antibiotic metabolites pyoluteorin (Pit) and 2,4-diacetylphlorogIucinol (Phi) in vitro. Strain CHAO/pME3090 also overproduced Pit and Phi in the rhizosphere of wheat infected or not infected with Pythium ultimum. The biocontrol activity of the wild-type and recombinant Straitis was compared using various plant pathogen-host combinations in a gnotobiotic system. Antibiotic overproduction affected neither the protection of wheat against P. ultimum and Gaeumannomyces graminis var. tritici nor the growth of wheat plants. In contrast, strain CHA0/pME3090 showed an increased capacity to protect cucumber against Fusarium oxysporum f. sp. cucumerinum and Phomopsis sclerotioides, compared with the wild-type strain CHAO, The antibiotic overproducing strain protected tobacco roots significantly better against Thielaviopsis basicola than the wild-type strain but drastically reduced the growth of tobacco plants and was also toxic to the growth of sweet com. On King's B agar and on malt agar, the recombinant strain CHA0/pME3090 inhibited all pathogens more than did the parental strain CHAO. Synthetic Pit and Phi were toxic to all fungi tested. Tobacco and sweet com were more sensitive to synthetic Pit and Phi than were cucumber and wheat. There was no correlation between the sensitivity of the pathogens to the synthetic antibiotics and the degree of disease suppression by strain CHAO pME3090. However, there was a correlation between the sensitivity of the plants and the toxicity of the recombinant strain. We conclude that the plant species rather than the pathogen determines whether cosmid pME3090 in P. fluorescens strain CHAO leads to improved disease suppression.