64 resultados para Phylogeny -- Molecular aspects
em Université de Lausanne, Switzerland
Resumo:
The combination of multiple exostoses (EXT) and enlarged parietal foramina (foramina parietalia permagna, FPP) represent the main features of the proximal 11p deletion syndrome (P11pDS), a contiguous gene syndrome (MIM 601224) caused by an interstitial deletion on the short arm of chromosome 11. Here we present clinical aspects of two new P11pDS patients and the clinical follow-up of one patient reported in the original paper describing this syndrome. Recognised clinical signs include EXT, FPP, mental retardation, facial asymmetry, asymmetric calcification of coronary sutures, defective vision (severe myopia, nystagmus, strabismus), skeletal anomalies (small hands and feet, tapering fingers), heart defect, and anal stenosis. In addition fluorescence in situ hybridisation and molecular analysis were performed to gain further insight in potential candidate genes involved in P11pDS.
Resumo:
The activation of the specific immune response against tumor cells is based on the recognition by the CD8+ Cytotoxic Τ Lymphocytes (CTL), of antigenic peptides (p) presented at the surface of the cell by the class I major histocompatibility complex (MHC). The ability of the so-called T-Cell Receptors (TCR) to discriminate between self and non-self peptides constitutes the most important specific control mechanism against infected cells. The TCR/pMHC interaction has been the subject of much attention in cancer therapy since the design of the adoptive transfer approach, in which Τ lymphocytes presenting an interesting response against tumor cells are extracted from the patient, expanded in vitro, and reinfused after immunodepletion, possibly leading to cancer regression. In the last decade, major progress has been achieved by the introduction of engineered lypmhocytes. In the meantime, the understanding of the molecular aspects of the TCRpMHC interaction has become essential to guide in vitro and in vivo studies. In 1996, the determination of the first structure of a TCRpMHC complex by X-ray crystallography revealed the molecular basis of the interaction. Since then, molecular modeling techniques have taken advantage of crystal structures to study the conformational space of the complex, and understand the specificity of the recognition of the pMHC by the TCR. In the meantime, experimental techniques used to determine the sequences of TCR that bind to a pMHC complex have been used intensively, leading to the collection of large repertoires of TCR sequences that are specific for a given pMHC. There is a growing need for computational approaches capable of predicting the molecular interactions that occur upon TCR/pMHC binding without relying on the time consuming resolution of a crystal structure. This work presents new approaches to analyze the molecular principles that govern the recognition of the pMHC by the TCR and the subsequent activation of the T-cell. We first introduce TCRep 3D, a new method to model and study the structural properties of TCR repertoires, based on homology and ab initio modeling. We discuss the methodology in details, and demonstrate that it outperforms state of the art modeling methods in predicting relevant TCR conformations. Two successful applications of TCRep 3D that supported experimental studies on TCR repertoires are presented. Second, we present a rigid body study of TCRpMHC complexes that gives a fair insight on the TCR approach towards pMHC. We show that the binding mode of the TCR is correctly described by long-distance interactions. Finally, the last section is dedicated to a detailed analysis of an experimental hydrogen exchange study, which suggests that some regions of the constant domain of the TCR are subject to conformational changes upon binding to the pMHC. We propose a hypothesis of the structural signaling of TCR molecules leading to the activation of the T-cell. It is based on the analysis of correlated motions in the TCRpMHC structure. - L'activation de la réponse immunitaire spécifique dirigée contre les cellules tumorales est basée sur la reconnaissance par les Lymphocytes Τ Cytotoxiques (CTL), d'un peptide antigénique (p) présenté à la suface de la cellule par le complexe majeur d'histocompatibilité de classe I (MHC). La capacité des récepteurs des lymphocytes (TCR) à distinguer les peptides endogènes des peptides étrangers constitue le mécanisme de contrôle le plus important dirigé contre les cellules infectées. L'interaction entre le TCR et le pMHC est le sujet de beaucoup d'attention dans la thérapie du cancer, depuis la conception de la méthode de transfer adoptif: les lymphocytes capables d'une réponse importante contre les cellules tumorales sont extraits du patient, amplifiés in vitro, et réintroduits après immunosuppression. Il peut en résulter une régression du cancer. Ces dix dernières années, d'importants progrès ont été réalisés grâce à l'introduction de lymphocytes modifiés par génie génétique. En parallèle, la compréhension du TCRpMHC au niveau moléculaire est donc devenue essentielle pour soutenir les études in vitro et in vivo. En 1996, l'obtention de la première structure du complexe TCRpMHC à l'aide de la cristallographie par rayons X a révélé les bases moléculaires de l'interaction. Depuis lors, les techniques de modélisation moléculaire ont exploité les structures expérimentales pour comprendre la spécificité de la reconnaissance du pMHC par le TCR. Dans le même temps, de nouvelles techniques expérimentales permettant de déterminer la séquence de TCR spécifiques envers un pMHC donné, ont été largement exploitées. Ainsi, d'importants répertoires de TCR sont devenus disponibles, et il est plus que jamais nécessaire de développer des approches informatiques capables de prédire les interactions moléculaires qui ont lieu lors de la liaison du TCR au pMHC, et ce sans dépendre systématiquement de la résolution d'une structure cristalline. Ce mémoire présente une nouvelle approche pour analyser les principes moléculaires régissant la reconnaissance du pMHC par le TCR, et l'activation du lymphocyte qui en résulte. Dans un premier temps, nous présentons TCRep 3D, une nouvelle méthode basée sur les modélisations par homologie et ab initio, pour l'étude de propriétés structurales des répertoires de TCR. Le procédé est discuté en détails et comparé à des approches standard. Nous démontrons ainsi que TCRep 3D est le plus performant pour prédire des conformations pertinentes du TCR. Deux applications à des études expérimentales des répertoires TCR sont ensuite présentées. Dans la seconde partie de ce travail nous présentons une étude de complexes TCRpMHC qui donne un aperçu intéressant du mécanisme d'approche du pMHC par le TCR. Finalement, la dernière section se concentre sur l'analyse détaillée d'une étude expérimentale basée sur les échanges deuterium/hydrogène, dont les résultats révèlent que certaines régions clés du domaine constant du TCR sont sujettes à un changement conformationnel lors de la liaison au pMHC. Nous proposons une hypothèse pour la signalisation structurelle des TCR, menant à l'activation du lymphocyte. Celle-ci est basée sur l'analyse des mouvements corrélés observés dans la structure du TCRpMHC.
Resumo:
Eggs deposited on plants by herbivorous insects represent a threat as they develop into feeding larvae. Plants are not a passive substrate and have evolved sophisticated mechanisms to detect eggs and induce direct and indirect defenses. Recent years have seen exciting development in molecular aspects of egg-induced responses. Some egg-associated elicitors have been identified, and signaling pathways and egg-induced expression profiles are being uncovered. Depending on the mode of oviposition, both the jasmonic acid and salicylic acid pathways seem to play a role in the induction of defense responses. An emerging concept is that eggs are recognized like microbial pathogens and innate immune responses are triggered. In addition, some eggs contain elicitors that induce highly specific defenses in plants. Examples of egg-induced suppression of defense or, on the contrary, egg-induced resistance highlight the complexity of plant-egg interactions in an on-going arms race between herbivores and their hosts. A major challenge is to identify plant receptors for egg-associated elicitors, to assess the specificity of these elicitors and to identify molecular components that underlie various responses to oviposition.
Resumo:
Astrocytes participate in information processing by actively modulating synaptic properties via gliotransmitter release. Various mechanisms of astrocytic release have been reported, including release from storage organelles via exocytosis and release from the cytosol via plasma membrane ion channels and pumps. It is still not fully clear which mechanisms operate under which conditions, but some of them, being Ca(2+)-regulated, may be physiologically relevant. The properties of Ca(2+)-dependent transmitter release via exocytosis or via ion channels are different and expected to produce different extracellular transmitter concentrations over time and to have distinct functional consequences. The molecular aspects of these two release pathways are still under active investigation. Here, we discuss the existing morphological and functional evidence in support of either of them. Transgenic mouse models, specific antagonists and localization studies have provided insight into regulated exocytosis, albeit not in a systematic fashion. Even more remains to be uncovered about the details of channel-mediated release. Better functional tools and improved ultrastructural approaches are needed in order fully to define specific modalities and effects of astrocytic gliotransmitter release pathways.
Resumo:
The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.
Resumo:
It is a well-appreciated fact that in many organisms the process of ageing reacts highly plastically, so that lifespan increases or decreases when the environment changes. The perhaps best-known example of such lifespan plasticity is dietary restriction (DR), a phenomenon whereby reduced food intake without malnutrition extends lifespan (typically at the expense of reduced fecundity) and which has been documented in numerous species, from invertebrates to mammals. For the evolutionary biologist, DR and other cases of lifespan plasticity are examples of a more general phenomenon called phenotypic plasticity, the ability of a single genotype to produce different phenotypes (e.g. lifespan) in response to changes in the environment (e.g. changes in diet). To analyse phenotypic plasticity, evolutionary biologists (and epidemiologists) often use a conceptual and statistical framework based on reaction norms (genotype-specific response curves) and genotype × environment interactions (G × E; differences in the plastic response among genotypes), concepts that biologists who are working on molecular aspects of ageing are usually not familiar with. Here I briefly discuss what has been learned about lifespan plasticity or, more generally, about plasticity of somatic maintenance and survival ability. In particular, I argue that adopting the conceptual framework of reaction norms and G × E interactions, as used by evolutionary biologists, is crucially important for our understanding of the mechanisms underlying DR and other forms of lifespan or survival plasticity.
Resumo:
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Resumo:
Based on histology, the placentae of eutherians are currently grouped in epitheliochorial, endotheliochorial and haemochorial placentae. In a haeckelian sense, the epitheliochorial contact with marked histiotrophic feeding by uterine milk is generally considered as primitive, especially since similar contacts exist in Marsupials. In contrast, the more intimate endotheliochorial and haemochorial contact, facilitating haemotrophic nutrition, is interpreted as a derived state. A cladistic analysis based on the phylogenetic relationships established by molecular analyses reveals that the basic clades are all characterized by an endotheliochorial or haemochorial placenta, and that the epitheliochorial placenta evolved at least three times in a convergent manner. This evolution may be explained by the fact that the epitheliochorial placenta in eutherians is more efficient in nutritional transfer (flow rate by exchange surface). Moreover, this arrangement may confer an advantage to the mother who can probably reduce the degree of manipulation by a genetically imprinted embryo.
Resumo:
Background and aims Recent studies have adopted a broad definition of Sapindaceae that includes taxa traditionally placed in Aceraceae and Hippocastanaceae, achieving monophyly but yielding a family difficult to characterize and for which no obvious morphological synapomorphy exists. This expanded circumscription was necessitated by the finding that the monotypic, temperate Asian genus Xanthoceras, historically placed in Sapindaceae tribe Harpullieae, is basal within the group. Here we seek to clarify the relationships of Xanthoceras based on phylogenetic analyses using a dataset encompassing nearly 3/4 of sapindaceous genera, comparing the results with information from morphology and biogeography, in particular with respect to the other taxa placed in Harpullieae. We then re-examine the appropriateness of maintaining the current broad, morphologically heterogeneous definition of Sapindaceae and explore the advantages of an alternative family circumscription. Methods Using 243 samples representing 104 of the 142 currently recognized genera of Sapindaceae s. lat. (including all in Harpullieae), sequence data were analyzed for nuclear (ITS) and plastid (matK, rpoB, trnD-trnT, trnK-matK, trnL-trnF and trnS-trnG) markers, adopting the methodology of a recent family-wide study, performing single-gene and total evidence analyses based on maximum likelihood (ML) and maximum parsimony (MP) criteria, and applying heuristic searches developed for large datasets, viz, a new strategy implemented in RAxML (for ML) and the parsimony ratchet (for MP). Bootstrap analyses were performed for each method to test for congruence between markers. Key results Our findings support earlier suggestions that Harpullieae are polyphyletic: Xanthoceras is confirmed as sister to all other sampled taxa of Sapindaceae s. lat.; the remaining members belong to three other clades within Sapindaceae s. lat., two of which correspond respectively to the groups traditionally treated as Aceraceae and Hippocastanaceae, together forming a clade sister to the largely tropical Sapindaceae s. str., which is monophyletic and morphologically coherent provided Xanthoceras is excluded. Conclusion To overcome the difficulties of a broadly circumscribed Sapindaceae, we resurrect the historically recognized temperate families Aceraceae and Hippocastanaceae, and describe a new family, Xanthoceraceae, thus adopting a monophyletic and easily characterized circumscription of Sapindaceae nearly identical to that used for over a century.
Resumo:
Shrews of the genus Sorex are characterized by a Holarctic distribution, and relationships among extant taxa have never been fully resolved. Phylogenies have been proposed based on morphological, karyological, and biochemical comparisons, but these analyses often produced controversial and contradictory results. Phylogenetic analyses of partial mitochondrial cytochrome b gene sequences (1011 bp) were used to examine the relationships among 27 Sorex species. The molecular data suggest that Sorex comprises two major monophyletic lineages, one restricted mostly to the New World and one with a primarily Palearctic distribution. Furthermore, several sister-species relationships are revealed by the analysis. Based on the split between the Soricinae and Crocidurinae subfamilies, we used a 95% confidence interval for both the calibration of a molecular clock and the subsequent calculation of major diversification events within the genus Sorex. Our analysis does not support an unambiguous acceleration of the molecular clock in shrews, the estimated rate being similar to other estimates of mammalian mitochondrial clocks. In addition, the data presented here indicate that estimates from the fossil record greatly underestimate divergence dates among Sorex taxa.
Resumo:
Many root-colonizing pseudomonads are able to promote plant growth by increasing phosphate availability in soil through solubilization of poorly soluble rock phosphates. The major mechanism of phosphate solubilization by pseudomonads is the secretion of gluconic acid, which requires the enzyme glucose dehydrogenase and its cofactor pyrroloquinoline quinone (PQQ). The main aim of this study was to evaluate whether a PQQ biosynthetic gene is suitable to study the phylogeny of phosphate-solubilizing pseudomonads. To this end, two new primers, which specifically amplify the pqqC gene of the Pseudomonas genus, were designed. pqqC fragments were amplified and sequenced from a Pseudomonas strain collection and from a natural wheat rhizosphere population using cultivation-dependent and cultivation-independent approaches. Phylogenetic trees based on pqqC sequences were compared to trees obtained with the two concatenated housekeeping genes rpoD and gyrB. For both pqqC and rpoD-gyrB, similar main phylogenetic clusters were found. However, in the pqqC but not in the rpoD-gyrB tree, the group of fluorescent pseudomonads producing the antifungal compounds 2,4-diacetylphloroglucinol and pyoluteorin was located outside the Pseudomonas fluorescens group. pqqC sequences from isolated pseudomonads were differently distributed among the identified phylogenetic groups than pqqC sequences derived from the cultivation-independent approach. Comparing pqqC phylogeny and phosphate solubilization activity, we identified one phylogenetic group with high solubilization activity. In summary, we demonstrate that the gene pqqC is a novel molecular marker that can be used complementary to housekeeping genes for studying the diversity and evolution of plant-beneficial pseudomonads.
Resumo:
Sudden cardiac death (SCD) is a major cause of premature death in young adults and children in developed countries. Standard forensic autopsy procedures are often unsuccessful in determining the cause of SCD. Post-mortem genetic testing, also called molecular autopsy, has revealed that a non-negligible number of these deaths are a result of inherited cardiac diseases, including arrhythmic disorders such as congenital long QT syndrome and Brugada syndrome. Due to the heritability of these diseases, the potential implications for living relatives must be taken into consideration. Advanced diagnostic analyses, genetic counselling, and interdisciplinary collaboration should be integral parts of clinical and forensic practice. In this article we present a multidisciplinary collaboration established in Lausanne, with the goal of properly informing families of these pathologies and their implications for surviving family members. In Switzerland, as in many other countries, legal guidelines for genetic testing do not address the use of molecular tools for post-mortem genetic analyses in forensic practice. In this article we present the standard practice guidelines established by our multidisciplinary team.
Resumo:
Life on earth is rhythmic by essence due to day/night alternation, and many biological processes are also cyclic. The kidney has a special role in the organism, controlling electrolytes and water balance, blood pressure, elimination of metabolic waste and xenobiotics and the production of several hormones. The kidney is submitted to changes throughout 24 h with periods of intense activity followed by calmer periods. Filtration, reabsorption and secretion are the three components determining renal function. Here, we review circadian changes related to glomerular function and proteinuria and emphasize the role of the clock in these processes.
Resumo:
Detecting the action of selection in natural populations can be achieved using the QST-FST comparison that relies on the estimation of FST with neutral markers, and QST using quantitative traits potentially under selection. QST higher than FST suggests the action of directional selection and thus potential local adaptation. In this article, we apply the QST-FST comparison to four populations of the hermaphroditic freshwater snail Radix balthica located in a floodplain habitat. In contrast to most studies published so far, we did not detect evidence of directional selection for local optima for any of the traits we measured: QST calculated using three different methods was never higher than FST. A strong inbreeding depression was also detected, indicating that outcrossing is probably predominant over selfing in the studied populations. Our results suggest that in this floodplain habitat, local adaptation of R. balthica populations may be hindered by genetic drift, and possibly altered by uneven gene flow linked to flood frequency.