5 resultados para Photosynthetic Pigments
em Université de Lausanne, Switzerland
Resumo:
The pigments and the plasters of the Roman frescoes discovered at the House of Diana (Cosa, Grosseto, Italy) were analysed using non-destructive and destructive mineralogical and chemical techniques. The characterization of both pigments and plasters was performed through optical microscopy, scanning electron microscopy and electron microprobe analysis. The pigments were identified by Raman spectroscopy and submitted to stable isotope analysis. The results were integrated with the archaeological data in order to determine and reconstruct the provenance, trade patterns and the employment of the raw materials used for the elaboration of the frescoes.
Resumo:
The most valuable pigment of the Roman wall paintings was the red color obtained from powdered cinnabar (Minium Cinnabaris pigment), the red mercury sulfide (HgS), which was brought from mercury (Hg) deposits in the Roman Empire. To address the question of whether sulfur isotope signatures can serve as a rapid method to establish the provenance of the red pigment in Roman frescoes, we have measured the sulfur isotope composition (delta(34) S value in parts per thousand VCDT) in samples of wall painting from the Roman city Aventicum (Avenches, Vaud, Switzerland) and compared them with values from cinnabar from European mercury deposits (Almaden in Spain, Idria in Slovenia, Monte Amiata in Italy, Moschellandsberg in Germany, and Genepy in France). Our study shows that the delta(34) S values of cinnabar from the studied Roman wall paintings fall within or near to the composition of Almaden cinnabar; thus, the provenance of the raw material may be deduced. This approach may provide information on provenance and authenticity in archaeological, restoration and forensic studies of Roman and Greek frescoes. Copyright (c) 2010 John Wiley & Sons, Ltd.
Resumo:
In plants, an oligogene family encodes NADP-malic enzymes (NADP-me), which are responsible for various functions and exhibit different kinetics and expression patterns. In particular, a chloroplast isoform of NADP-me plays a key role in one of the three biochemical subtypes of C4 photosynthesis, an adaptation to warm environments that evolved several times independently during angiosperm diversification. By combining genomic and phylogenetic approaches, this study aimed at identifying the molecular mechanisms linked to the recurrent evolutions of C4-specific NADP-me in grasses (Poaceae). Genes encoding NADP-me (nadpme) were retrieved from genomes of model grasses and isolated from a large sample of C3 and C4 grasses. Genomic and phylogenetic analyses showed that 1) the grass nadpme gene family is composed of four main lineages, one of which is expressed in plastids (nadpme-IV), 2) C4-specific NADP-me evolved at least five times independently from nadpme-IV, and 3) some codons driven by positive selection underwent parallel changes during the multiple C4 origins. The C4 NADP-me being expressed in chloroplasts probably constrained its recurrent evolutions from the only plastid nadpme lineage and this common starting point limited the number of evolutionary paths toward a C4 optimized enzyme, resulting in genetic convergence. In light of the history of nadpme genes, an evolutionary scenario of the C4 phenotype using NADP-me is discussed.
Resumo:
The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as a trigger for HSP induction. However, increasing evidence has shown that many stress events cause HSP induction without commensurate protein denaturation. This has led to the membrane sensor hypothesis where the membrane's physical and structural properties play an initiating role in the heat shock response. In this review, we discuss heat-induced modulation of the membrane's physical state and changes to these properties which can be brought about by interaction with HSPs. Heat stress also leads to changes in lipid-based signaling cascades and alterations in calcium transport and availability. Such observations emphasize the importance of membranes and their lipids in the heat shock response and provide a new perspective for guiding further studies into the mechanisms that mediate cellular and organismal responses to heat stress.