9 resultados para Photosensitizer

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a mode of nude mice bearing a human colon carcinoma xenograft, the biodistribution and tumor localization of metatetrahydroxyphenylchlorin (m-THPC) coupled to polyethylene glycol (PEG) were compared with those of the free form of this photosensitizer used in photodynamic therapy (PDT). At different times after i.v. injection of both forms of 125I-labeled photosensitizer, m-THPC-PEG gave on average a 2-fold higher tumor uptake than free m-THPC. In addition, at early times after injection, m-THPC-PEG showed a 2-fold longer blood circulating half-life and a 4-fold lower liver uptake than free m-THPC. The tumor to normal tissue ratios of radioactivity concentrations were always higher for m-THPC-PEG than for free m-THPC at any time point studied from 2 to 96 hr post-injection. Significant coefficients of correlation between direct fluorescence measurements and radioactivity counting were obtained within each organ tested. Fluorescence microscopy studies showed that m-THPC-PEG was preferentially localized near the tumor vessels, whereas m-THPC was more diffusely distributed inside the tumor tissue. To verify whether m-THPC-PEG conjugate remained phototoxic in vivo, PDT experiments were performed 72 hr after injection and showed that m-THPC-PEG was as potent as free m-THPC in the induction of tumor regression provided that the irradiation does for m-THPC-PEG conjugate was adapted to a well-tolerated 2-fold higher level. The overall results demonstrate first the possibility of improving the in vivo tumor localization of a hydrophobic dye used for PDT by coupling it to PEG and second that a photosensitizer conjugated to a macromolecule can remain phototoxic in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the photodynamic potential of a new hydrosoluble photosensitizer (WST-11, Stakel; Steba Biotech, Toussus-Le-Noble, France), for use in occlusion of normal choroidal vessels in the rabbit eye and CNV (choroidal neovascularization) in the rat eye. METHODS: Occlusive and nonocclusive parameters of Stakel and verteporfin photodynamic therapy (PDT) were investigated in pigmented rabbits. Eyes were followed by fluorescein angiography (FA) and histology at various intervals after PDT. RESULTS: When occlusive parameters (fluence of 50 J/cm(2), 5 mg/kg drug dose and DLI [distance to light illumination] of 1 minute) were used, Stakel PDT was efficient immediately after treatment without associated structural damage of the RPE and retina overlying the treated choroid in the rabbit eye. Two days later, total occlusion of the choriocapillaries was seen in 100% of the treated eyes, along with accompanying histologic structural changes in the overlying retina. When the occlusive parameters (fluence, 100 J/cm2; drug dose, 12 mg/m2; and DLI, 5 minutes) of verteporfin PDT were used, occlusion of the choriocapillaries was observed in 89% of the treated eyes. Histology performed immediately after treatment demonstrated structural damage of the overlying retina and RPE layer. Weaker, nonocclusive Stakel PDT parameters (25 J/cm2, 5 mg/kg, and DLI of 10 minutes) did not induce choriocapillary occlusion or retinal lesions on FA or histology. Weaker, nonocclusive verteporfin PDT parameters (10 J/cm2, 0.2 mg/kg, and DLI of 5 minutes) did not induce choriocapillary occlusion. However, histology of these eyes showed the presence of damage in the retinal and choroidal tissues. Moreover, preliminary results indicate that selective CNV occlusion can be achieved with Stakel PDT in the rat eye. CONCLUSIONS: Unlike verteporfin PDT, Stakel PDT does not cause direct damage to the RPE cell layer or retina. These observations indicate that Stakel PDT may have a high potential for beneficial therapeutic outcomes in treatment of AMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photosensitizing properties of m-tetrahydroxyphenylchlorin (mTHPC) and polyethylene glycol-derivatized mTHPC (pegylated mTHPC) were compared in nude mice bearing human malignant mesothelioma, squamous cell carcinoma and adenocarcinoma xenografts. Laser light (20 J/cm2) at 652 nm was delivered to the tumour (surface irradiance) and to an equal-sized area of the hind leg of the animals after i.p. administration of 0.1 mg/kg body weight mTHPC and an equimolar dose of pegylated mTHPC, respectively. The extent of tumour necrosis and normal tissue injury was assessed by histology. Both mTHPC and pegylated mTHPC catalyse photosensitized necrosis in mesothelioma xenografts at drug-light intervals of 1-4 days. The onset of action of pegylated mTHPC seemed slower but significantly exceeds that of mTHPC by days 3 and 4 with the greatest difference being noted at day 4. Pegylated mTHPC also induced significantly larger photonecrosis than mTHPC in squamous cell xenografts but not in adenocarcinoma at day 4, where mTHPC showed greatest activity. The degree of necrosis induced by pegylated mTHPC was the same for all three xenografts. mTHPC led to necrosis of skin and underlying muscle at a drug-light interval of 1 day but minor histological changes only at drug-light intervals from 2-4 days. In contrast, pegylated mTHPC did not result in histologically detectable changes in normal tissues under the same treatment conditions at any drug-light interval assessed. In this study, pegylated mTHPC had advantages as a photosensitizer compared to mTHPC. Tissue concentrations of mTHPC and pegylated mTHPC were measured by high-performance liquid chromatography in non-irradiated animals 4 days after administration. There was no significant difference in tumour uptake between the two sensitizers in mesothelioma, adenocarcinoma and squamous cell carcinoma xenografts. Tissue concentration measurements were of limited use for predicting photosensitization in this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RÉSUMÉ : Chez l'homme, le manque de sélectivité des agents thérapeutiques représente souvent une limitation pour le traitement des maladies. Le ciblage de ces agents pour un tissu défini pourrait augmenter leur sélectivité et ainsi diminuer les effets secondaires en comparaison d'agents qui s'accumuleraient dans tout le corps. Cela pourrait aussi améliorer l'efficacité des traitements en permettant d'avoir une concentration localisée plus importante. Le ciblage d'agents thérapeutiques est un champ de recherche très actif. Les stratégies sont généralement basées sur les différences entre cellules normales et malades. Ces différences peuvent porter soit sur l'expression des molécules à leurs surfaces comme des récepteurs ou des transporteurs, soit sur les activités enzymatiques exprimées. Le traitement thérapeutique choisi ici est la thérapie photodynamique et est déjà utilisé pour le traitement de certains cancers. Cette thérapie repose sur l'utilisation de molécules qui réagissent à la lumière, les photosensibilisants. Elles absorbent l'énergie lumineuse et réagissent avec l'oxygène pour former des radicaux toxiques pour les cellules. Les photosensibilisants utilisés ici sont de deux natures : (i) soit ils sont tétrapyroliques (comme les porphyrines et chlorines), c'est à dire qu'ils sont directement activables par la lumière ; (ii) soit ce sont des prodrogues de photosensibilisants comme l'acide 5aminolévulinique (ALA) qui est transformé dans la cellule en protoporphyrine IX photosensibilisante. Dans le but d'augmenter la sélectivité des photosensibilisants, nous avons utilisé deux stratégies différentes : (i) le photosensibilisant est modifié par le greffage d'un agent de ciblage ; (ii) le photosensibilisant est incorporé dans des structures moléculaires de quelques centaines de nanomètres. Les sucres et l'acide folique sont des agents de ciblage largement établis et ont été utilisés ici car leurs récepteurs sont surexprimés à la surface de nombreuses cellules malades. Ainsi, des dérivés sucres ou acide folique de l'ALA ont été synthétisés et évalués in vitro sur de nombreuses lignées cellulaires cancéreuses. La stratégie utilisant l'acide folique est apparue incompatible avec l'utilisation de l'ALA puisque aucune photosensibilité n'a été induite par le composé. La stratégie utilisant les sucres a, par ailleurs, provoquée de bonnes photosensibilités mais pas d'augmentation de sélectivité. En parallèle, la combinaison entre les propriétés anticancéreuses des complexes métalliques au ruthénium avec les propriétés photosensibilisantes des porphyrines, a été évaluée. En effet, les thérapies combinées ont émergé il y a une dizaine d'années et représentent aujourd'hui de bonnes alternatives aux monothérapies classiques. Des ruthenium(I1)-arènes complexés avec la tetrapyridylporphyrine ont ainsi présenté de bonnes cytotoxicités et de bonnes phototoxicités pour des cellules de mélanomes. Des porphyrines ont aussi été compléxées avec des noyaux de diruthénium et ce type de dérivé a présenté de bonnes phototoxicités et une bonne sélectivité pour les cellules cancéreuses de l'appareil reproducteur féminin. L'incorporation de photosensibilisants tétrapyroliques a finalement été effectuée en utilisant des nanoparticules (NP) biocompatibles composées de chitosan et de hyaluronate. L'effet de ces NP a été évalué pour le traitement de la polyarthrite rhumatoïde (PR). Les NP ont d'abord été testées in vitro avec des macrophages de souris et les résultats ont mis en évidence de bonnes sélectivités et photosensibilités pour ces cellules. In vivo chez un modèle marin de la PR, l'utilisation de ces NP a révélé un plus grand temps de résidence des NP dans le genou de la souris en comparaison du temps obtenu avec le photosensibilisant seul. Le traitement par PDT a aussi démontré une bonne efficacité par ailleurs égale à celle obtenue avec les corticoïdes utilisés en clinique. Pour finir, les NP ont aussi démontré une bonne efficacité sur les myelomonocytes phagocytaires humains et sur les cellules contenues dans le liquide synovial de patients présentant une PR. Tous ces résultats suggèrent que les deux stratégies de ciblage peuvent être efficaces pour les agents thérapeutiques. Afm d'obtenir de bons résultats, il est toutefois nécessaire de réaliser une analyse minutieuse de la cible et du mode d'action de l'agent thérapeutique. Concernant les perspectives, la combinaison des deux stratégies c'est à dire incorporer des agents thérapeutiques dans des nanostructures porteuses d'agents de ciblage, représente probablement une solution très prometteuse. SUMMARY : In humans, the lack of selectivity of drugs and their high effective concentrations often represent limitations for the treatment of diseases. Targeting the therapeutical agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body and could also improve treatment efûciency by allowing a localized high concentration of the agents. Targeting therapeutics to defined cells in human pathologies is a main challenge and a very active field of research. Strategies are generally based on the different behaviors and patterns of expression of diseased cells compared to normal cells such as receptors, proteases or trans-membrane carriers. The therapeutic treatment chosen here is the photodynamic therapy and is already used in the treatment of many cancers. This therapy relies on the administration of a photosensitizer (PS) which will under light, react with oxygen and induce formation of reactive oxygen species which are toxic for cells. The PSs used here are either tetrapyrolic (i. e. porphyries and chlorins) or prodrugs of PS (5-aminolevulinic acid precursor of the endogenous protoporphyrin Imo. In order to improve PS internalization and selectivity, we have used two different strategies: the modification of the PSs with diseased cell-targeting agents as well as their encapsulation into nanostructures. Sugars and folic acid are well established as targeting entities for diseased cells and were used here since their transporters are overexpressed on the surface of many cancer cells. Therefore sugar- and folic acid-derivatives of 5-aminolevulinic acid (ALA) were synthesized and evaluated in vitro in several cancer cell lines. The folic acid strategy appeared to be incompatible with ALA since no photosensitivity was induced while the strategy with sugars induced good photosensitivites but no increase of selectivity. Alternatively, the feasibility of combining the antineoplastic properties of ruthenium complexes with the porphyrin's photosensitizing properties, was evaluated since combined therapies have emerged as good alternatives to classical treatments. Tetrapyridylporphyrins complexed to ruthenium (I17 arenes presented good cytotoxicities and good phototoxicities toward melanoma cells. Porphyries were also complexed to diruthenium cores and this type of compound presented good phototoxicities and good selectivity for female reproductive cancer cells. The encapsulation of tetrapyrolic PSs was finally investigated using biocompatible nanogels composed of chitosan and hyaluronate. The behavior of these nanoparticles was evaluated for the treatment of rheumatoid arthritis (RA). They were first tested in vitro in mouse macrophages and results revealed good selectivities and phototoxicities toward these cells. In vivo in mice model of RA, the use of such nanoparticles instead of free PS showed longer time of residence in mice knees. Photodynamic protocols also demonstrated good efficiency of the treatment comparable to the corticoid injection used in the clinic. Finally our system was also efficient in human cells using phagocytic myelomonocytes or using cells of synovial fluids taken from patients with RA. Altogether, these results revealed that both strategies of modification or encapsulation of drugs can be successful in the targeting of diseased cells. However, a careful analysis of the target and of the mode of action of the drug, are needed in order to obtain good results. Looking ahead to the future, the combination of the two strategies (i.e. drugs loaded into nanostructures bearing the targeting agents) would represent probably the best solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water-soluble metalla-cages were used to deliver hydrophobic porphin molecules to cancer cells. After internalization, the photosensitizer was photoactivated, significantly increasing the cytotoxicity in cells. During the transport, the photosensitizer remains nonreactive to light, offering a new strategy to tackle overall photosensitization, a limitation often encountered in photodynamic therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In human pathologies, therapeutic treatments are often limited by the lack of selectivity of drugs and their elevated effective concentrations. Targeting these agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body. Targeting could also improve treatment efficiency by allowing a localized high concentration of the agents. Based on the different behaviors and patterns of expression between diseased and normal cells, strategies for targeting can be explored. For example, receptors, proteases or trans-membrane carriers could be different or differently expressed. Many therapeutic procedures rely on this fact, including photodynamic therapy (PDT). PDT is already used in the treatment of some cancers, of inflammatory diseases and others diseases such as age-related macular degeneration or acne. PDT relies on the activation of a photosensitizer (PS) by visible light which results in the production of cytotoxic reactive oxygen species. In PDT, the general distribution of PS to the whole body leads to generalized photosensitization and poor acceptance of treatments by patients. One way to avoid these effects is to improve the targeting of PSs to diseased tissues using modification of PS with peptides or proteins that will target specific receptors or enzymes. PSs could also be functionalized with non-proteic ligands such as organometalics to achieve targeted and/or combined therapies. Alternatively, PSs could be encapsulated in nanoparticles bearing targeting agents which will decrease concentration of free circulating PS and improve photodynamic efficiency. These different approaches will be discussed in the present review with an emphasis on the use of peptides and proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a thrombin-sensitive polymeric photosensitizer prodrug (T-PS) to selectively image and eradicate inflammatory lesions in rheumatoid arthritis (RA). Thrombin is a serine protease up-regulated in synovial tissues of rheumatoid arthritis (RA) patients. T-PS consists of a polymeric backbone, to which multiple photosensitizer (PS) units are tethered via short thrombin-cleavable peptide linkers. Fluorescence emission and phototoxicity of the prodrug are efficiently quenched due to the interaction of neighboring photosensitizer units. The prodrug is passively delivered to the inflammation site via the enhanced permeability and retention (EPR) effect. Subsequent site-selective proteolytic cleavage of the peptide linkers restores its photoactivity by increasing the mutual distance between PS. Whole animal imaging in murine collagen-induced arthritis, an experimental model of RA revealed a dose-dependent fluorescence increase in arthritic paws after systemic prodrug injection. In addition, administration of T-PS resulted in much higher fluorescence selectivity for arthritic joints as compared to the free PS. Irradiation of the arthritic joints induced light dose dependent phototoxic effects such as apoptosis, vascular damage and local hemorrhage. Long-term observations showed complete regression of the latter. Irradiated non-arthritic tissues or non-irradiated arthritic tissues showed no histological effects after photodynamic therapy with T-PS. This illustrates that T-PS can localize inflammatory lesions with excellent selectivity and induce apoptosis and vascular shut down after irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease-sensitive macromolecular prodrugs have attracted interest for bio-responsive drug delivery to sites with up-regulated proteolytic activities such as inflammatory or cancerous lesions. Here we report the development of a novel polymeric photosensitizer prodrug (T-PS) to target thrombin, a protease up-regulated in synovial tissues of rheumatoid arthritis (RA) patients, for minimally invasive photodynamic synovectomy. In T-PS, multiple photosensitizer units are tethered to a polymeric backbone via short, thrombin-cleavable peptide linkers. Photoactivity of the prodrug is efficiently impaired due to energy transfer between neighbouring photosensitizer units. T-PS activation by exogenous and endogenous thrombin induced an increase in fluorescence emission by a factor of 16 after in vitro digestion and a selective fluorescence enhancement in arthritic lesions in vivo, in a collagen-induced arthritis mouse model. In vitro studies on primary human synoviocytes showed a phototoxic effect only after enzymatic digestion of the prodrug and light irradiation, thus demonstrating the functionality of T-PS induced PDT. The developed photosensitizer prodrugs combine the passive targeting capacity of macromolecular drug delivery systems with site-selective photosensitizer release and activation. They illuminate lesions with pathologically enhanced proteolytic activity and induce cell death, subsequent to irradiation.