9 resultados para Photon Irradiance

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excessive exposure to solar ultraviolet (UV) is the main cause of skin cancer. Specific prevention should be further developed to target overexposed or highly vulnerable populations. A better characterisation of anatomical UV exposure patterns is however needed for specific prevention. To develop a regression model for predicting the UV exposure ratio (ER, ratio between the anatomical dose and the corresponding ground level dose) for each body site without requiring individual measurements. A 3D numeric model (SimUVEx) was used to compute ER for various body sites and postures. A multiple fractional polynomial regression analysis was performed to identify predictors of ER. The regression model used simulation data and its performance was tested on an independent data set. Two input variables were sufficient to explain ER: the cosine of the maximal daily solar zenith angle and the fraction of the sky visible from the body site. The regression model was in good agreement with the simulated data ER (R(2)=0.988). Relative errors up to +20% and -10% were found in daily doses predictions, whereas an average relative error of only 2.4% (-0.03% to 5.4%) was found in yearly dose predictions. The regression model predicts accurately ER and UV doses on the basis of readily available data such as global UV erythemal irradiance measured at ground surface stations or inferred from satellite information. It renders the development of exposure data on a wide temporal and geographical scale possible and opens broad perspectives for epidemiological studies and skin cancer prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intercomparison of the response of different photon and neutron detectors was performed in several measurement positions around a spent fuel cask (type TN 12/2B) filled with 4 MOX and 8 UO2 15 x 15 PWR fuel assemblies at the nuclear power plant Gosgen (KKG) in Switzerland. The instruments used in the study were both active and passive, photon and neutron detectors calibrated either for ambient or personal dose equivalent. The aim of the measurement campaign was to compare the responses of the radiation instruments to routinely used detectors. It has been shown that especially the indications of the neutron detectors are strongly dependent on the neutron spectra around the cask due to their different energy responses. However, routinely used active photon and neutron detectors were shown to be reliable instruments. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keywords Diabetes mellitus; coronary artery disease; myocardial ischemia; prognostic value; single-photon emission computed tomography myocardial perfusion imaging Summary Aim: To determine the long-term prognostic value of SPECT myocardial perfusion imaging (MPI) for the occurrence of cardiovascular events in diabetic patients. Methods: SPECT MPI of 210 consecutive Caucasian diabetic patients were analysed using Kaplan-Meier event-free survival curves and independent predictors were determined by Cox multivariate analyses. Results: Follow-up was complete in 200 (95%) patients with a median period of 3.0 years (0.8-5.0). The population was composed of 114 (57%) men, age 65±10 years, 181 (90.5%) type 2 diabetes mellitus, 50 (25%) with a history of coronary artery disease (CAD) and 98 (49%) presenting chest pain prior to MPI. The prevalence of abnormal MPI was 58%. Patients with a normal MPI had neither cardiac death, nor myocardial infarction, independently of a history of coronary artery disease or chest pain. Among the independent predictors of cardiac death and myocardial infarction, the strongest was abnormal MPI (p<.0001), followed by history of CAD (Hazard Ratio (HR)= t 5.9, p=0.0001), diabetic retinopathy (HR=10.0, p=0.001) and inability to exercise (HR=7.7, p=0.02). Patients with normal 1VIPI had a low revascularisation rate of 2.4% during the follow-up period. Compared to normal MPI, cardiovascular events increased 5.2 fold for reversible defects, 8.5 fold for fixed defects and 20.1 fold for the association of both defects. Conclusion: Diabetic patients with normal MPI had an excellent prognosis independently of history of CAD. On the opposite, an abnormal MPI led to a > 5 fold increase in cardiovascular events. This emphasizes the value of SPECT MPI in predicting and risk-stratifying cardiovascular events in diabetic patients. Mots-Clés Diabète; maladie coronarienne; ischémie myocardique; valeur pronostique; tomoscintigraphie myocardique de perfusion par émission monophotonique Résumé Objectifs: Déterminer la valeur pronostique à long terme de la tomoscintigraphie myocardique de perfusion (TSMP) chez les patients diabétiques pour prédire les événements cardiovasculaires (ECV). Méthodes: Etude de 210 diabétiques caucasiens consécutifs référés pour une TSMP. Les courbes de survie ont été déterminées par Kaplan-Meier et les facteurs prédictifs indépendants par analyses multivariées de type Cox. Résultats: Le suivi a été complet chez 200 (95%) patients avec une durée médiane de 3.0 ans (0.8-50). La population était composée de 114 (57%) hommes, âge moyen 65±10 ans, avec 181 (90.5%) diabète de type 2, 50 (25%) antécédents de maladie coronarienne (AMC) et 98 (49%) patients connus pour un angor avant la TSMP. La prévalence de TSMP anormales était de 58%. Aucun décès d'origine cardiaque ou infarctus du myocarde n'est survenu chez les patients avec une TSMP normale, ceci indépendamment de leurs AMC et des douleurs thoraciques. Les facteurs prédictifs indépendants pour les ECV sont une TSMP anormale (p<.0001), les AMC (Hazard Ratio (HR)=15.9, p-0.0001), suivi de la rétinopathie diabétique (HR-10.0, p=0.001) et de l'incapacité à effectuer un exercice (HR=7.7, p=0.02). Les patients avec une TSMP normale ont présenté un taux de revascularisations de 2.4%. La présence de défauts mixtes accroît le risque d'ECV de 20.1 fois, les défauts fixes de 8.5 fois et les défauts réversibles de 5.2 fois comparés aux sujets avec une TSMP normale. Conclusion: Les patients diabétiques, coronariens ou non, avec une tomoscintigraphie myocardique de perfusion normale ont un excellent pronostique. A l'opposé, une TSMP anormale est associée à une augmentation du risque d'ECV de plus de 5 fois. Ceci confirme l'utilité de la TSMP dans la stratification du risque chez les patients diabétiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Perfusion-cardiac magnetic resonance (CMR) has emerged as a potential alternative to single-photon emission computed tomography (SPECT) to assess myocardial ischaemia non-invasively. The goal was to compare the diagnostic performance of perfusion-CMR and SPECT for the detection of coronary artery disease (CAD) using conventional X-ray coronary angiography (CXA) as the reference standard. Methods and results In this multivendor trial, 533 patients, eligible for CXA or SPECT, were enrolled in 33 centres (USA and Europe) with 515 patients receiving MR contrast medium. Single-photon emission computed tomography and CXA were performed within 4 weeks before or after CMR in all patients. The prevalence of CAD in the sample was 49%. Drop-out rates for CMR and SPECT were 5.6 and 3.7%, respectively (P = 0.21). The primary endpoint was non-inferiority of CMR vs. SPECT for both sensitivity and specificity for the detection of CAD. Readers were blinded vs. clinical data, CXA, and imaging results. As a secondary endpoint, the safety profile of the CMR examination was evaluated. For CMR and SPECT, the sensitivity scores were 0.67 and 0.59, respectively, with the lower confidence level for the difference of +0.02, indicating superiority of CMR over SPECT. The specificity scores for CMR and SPECT were 0.61 and 0.72, respectively (lower confidence level for the difference: -0.17), indicating inferiority of CMR vs. SPECT. No severe adverse events occurred in the 515 patients. Conclusion In this large multicentre, multivendor study, the sensitivity of perfusion-CMR to detect CAD was superior to SPECT, while its specificity was inferior to SPECT. Cardiac magnetic resonance is a safe alternative to SPECT to detect perfusion deficits in CAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8x106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 mu l) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 mu s instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemining from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photons participate in many atomic and molecular interactions and changes. Recent biophysical research has shown the induction of ultraweak photons in biological tissue. It is now established that plants, animal and human cells emit a very weak radiation which can be readily detected with an appropriate photomultiplier system. Although the emission is extremely low in mammalian cells, it can be efficiently induced by ultraviolet light. In our studies, we used the differentiation system of human skin fibroblasts from a patient with Xeroderma Pigmentosum of complementation group A in order to test the growth stimulation efficiency of various bone growth factors at concentrations as low as 5 ng/ml of cell culture medium. In additional experiments, the cells were irradiated with a moderate fluence of ultraviolet A. The different batches of growth factors showed various proliferation of skin fibroblasts in culture which could be correlated with the ultraweak photon emission. The growth factors reduced the acceleration of the fibroblast differentiation induced by mitomycin C by a factor of 10-30%. In view that fibroblasts play an essential role in skin aging and wound healing, the fibroblast differentiation system is a very useful tool in order to elucidate the efficacy of growth factors.