9 resultados para Phosphocreatine
em Université de Lausanne, Switzerland
Resumo:
La créatine joue un rôle essentiel dans le métabolisme cellulaire par sa conversion, par la creatine kinase, en phosphocreatine permettant la régénération de l'ATP. La synthèse de créatine, chez les mammifères, s'effectue par une réaction en deux étapes impliquant Γ arginine: glycine amidinotransférase (AGAT) et la guanidinoacétate méthyltransférase (GAMT). L'entrée de créatine dans les cellules s'effectue par son transporteur, SLC6A8. Les déficiences en créatine, dues au déficit en GAMT, AGAT ou SLC6A8, sont fréquentes et caractérisées par une absence ou une forte baisse de créatine dans le système nerveux central. Alors qu'il est connu que AGAT, GAMT et SLC6A8 sont exprimés par le cerveau, les conséquences des déficiences en créatine sur les cellules nerveuses sont peu comprises. Le but de ce travail était de développer de nouveaux modèles expérimentaux des déficiences en Cr dans des cultures 3D de cellules nerveuses de rat en agrégats au moyen de l'interférence à l'ARN appliquée aux gènes GAMT et SLC6A8. Des séquences interférentes (shRNAs) pour les gènes GAMT et SLC6A8 ont été transduites par des vecteurs viraux AAV (virus adéno-associés), dans les cellules nerveuses en agrégats. Nous avons ainsi démontré une baisse de l'expression de GAMT au niveau protéique (mesuré par western blot), et ARN messager (mesuré par qPCR) ainsi qu'une variation caractérisitique de créatine et guanidinoacétate (mesuré par spectrométrie de masse). Après avoir validé nos modèles, nous avons montré que les knockdown de GAMT ou SLC6A8 affectent le développement des astrocytes et des neurones ou des oligodendrocytes et des astrocytes, respectivement, ainsi qu'une augmentation de la mort cellulaire et des modifications dans le pattern d'activation des voies de signalisation impliquant caspase 3 et p38 MAPK, ayant un rôle dans le processus d'apoptose. - Creatine plays essential roles in energy metabolism by the interconversion, by creatine kinase, to its phosphorylated analogue, phosphocreatine, allowing the regeneration of ATP. Creatine is synthesized in mammals by a two step mechanism involving arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT). Creatine is taken up by cells by a specific transporter, SLC6A8. Creatine deficiency syndromes, due to defects in GAMT, AGAT and SLC6A8, are among the most frequent inborn errors of metabolism, and are characterized by an absence or a severe decrease of creatine in central nervous system, which is the main tissue affected. While it is known that AGAT, GAMT and SLC6A8 are expressed in CNS, many questions remain on the specific effects of AGAT, GAMT and SLC6A8 deficiencies on brain cells. Our aim was to develop new experimental models of creatine deficiencies by knockdown of GAMT and SLC6A8 genes by RNAi in 3D organotypic rat brain cell cultures in aggregates. Specific shRNAs for the GAMT and SLC6A8 genes were transduced in brain cell aggregates by adeno-associated viruses (AAV). The AAV-transduced shRNAs were able to efficiently knockdown the expression of our genes of interest, as shown by a strong decrease of protein by western blotting, a decrease of mRNA by qPCR or characteristic variations of creatine and guanidinoacetate by tandem mass spectrometry. After having validated our experimental models, we have also shown that GAMT and SLC6A8 knockdown affected the development of astrocytes and neurons or oligodendrocytes and astrocytes, respectively. We also observed an increase of cell death and variations in activation pattern of caspase 3 and p38 MAPK pathways, involved in apoptosis, in our experimental model.
Resumo:
The brain regulates all metabolic processes within the organism, and therefore, its energy supply is preserved even during fasting. However, the underlying mechanism is unknown. Here, it is shown, using (31)P-magnetic resonance spectroscopy that during short periods of hypoglycemia and hyperglycemia, the brain can rapidly increase its high-energy phosphate content, whereas there is no change in skeletal muscle. We investigated the key metabolites of high-energy phosphate metabolism as rapidly available energy stores by (31)P MRS in brain and skeletal muscle of 17 healthy men. Measurements were performed at baseline and during dextrose or insulin-induced hyperglycemia and hypoglycemia. During hyperglycemia, phosphocreatine (PCr) concentrations increased significantly in the brain (P = 0.013), while there was a similar trend in the hypopglycemic condition (P = 0.055). Skeletal muscle content remained constant in both conditions (P > 0.1). ANOVA analyses comparing changes from baseline to the respective glycemic plateau in brain (up to +15%) vs. muscle (up to -4%) revealed clear divergent effects in both conditions (P < 0.05). These effects were reflected by PCr/Pi ratio (P < 0.05). Total ATP concentrations revealed the observed divergency only during hyperglycemia (P = 0.018). These data suggest that the brain, in contrast to peripheral organs, can activate some specific mechanisms to modulate its energy status during variations in glucose supply. A disturbance of these mechanisms may have far-reaching implications for metabolic dysregulation associated with obesity or diabetes mellitus.
Resumo:
J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06935.x Abstract Apart of its well known function of 'energetic buffer' through the creatine/phosphocreatine/creatine kinase system allowing the regeneration of ATP, creatine has been recently suggested as a potential neuromodulator of even true neurotransmitter. Moreover, the recent discovery of primary creatine deficiency syndromes, due to deficiencies in l-arginine : glycine amidinotransferase or guanidinoacetate methyltransferase (the two enzymes allowing creatine synthesis) or in the creatine transporter, has shed new light on creatine synthesis, metabolism and transport, in particular in CNS which appears as the main tissue affected by these creatine deficiencies. Recent data suggest that creatine can cross blood-brain barrier but only with a poor efficiency, and that the brain must ensure parts of its needs in creatine by its own endogenous synthesis. Finally, the recent years have demonstrated the interest to use creatine as a neuroprotective agent in a growing number of neurodegenerative diseases, including Parkinson's and Huntington's diseases. This article aims at reviewing the latest data on creatine metabolism and transport in the brain, in relation to creatine deficiencies and to the potential use of creatine as neuroprotective molecule. Emphasis is also given to the importance of creatine for cerebral function.
Resumo:
Hyperammonemia in neonates and infants affects brain development and causes mental retardation. We report that ammonium impaired cholinergic axonal growth and altered localization and phosphorylation of intermediate neurofilament protein in rat reaggregated brain cell primary cultures. This effect was restricted to the phase of early maturation but did not occur after synaptogenesis. Exposure to NH4Cl decreased intracellular creatine, phosphocreatine, and ADP. We demonstrate that creatine cotreatment protected axons from ammonium toxic effects, although this did not restore high-energy phosphates. The protection by creatine was glial cell-dependent. Our findings suggest that the means to efficiently sustain CNS creatine concentration in hyperammonemic neonates and infants should be assessed to prevent impairment of axonogenesis and irreversible brain damage.
Resumo:
CONTEXT: Recent magnetic resonance imaging studies have attempted to relate volumetric brain measurements in early schizophrenia to clinical and functional outcome some years later. These studies have generally been negative, perhaps because gray and white matter volumes inaccurately assess the underlying dysfunction that might be predictive of outcome. OBJECTIVE: To investigate the predictive value of frontal and temporal spectroscopy measures for outcome in patients with first-episode psychoses. DESIGN: Left prefrontal cortex and left mediotemporal lobe voxels were assessed using proton magnetic resonance spectroscopy to provide the ratio of N-acetylaspartate (NAA) and choline-containing compounds to creatine and phosphocreatine (Cr) (NAA/Cr ratio). These data were used to predict outcome at 18 months after admission, as assessed by a systematic medical record audit. SETTING: Early psychosis clinic. PARTICIPANTS: Forty-six patients with first-episode psychosis. MAIN OUTCOME MEASURES: We used regression models that included age at imaging and duration of untreated psychosis to predict outcome scores on the Global Assessment of Functioning Scale, Clinical Global Impression scales, and Social and Occupational Functional Assessment Scale, as well as the number of admissions during the treatment period. We then further considered the contributions of premorbid function and baseline level of negative symptoms. RESULTS: The only spectroscopic predictor of outcome was the NAA/Cr ratio in the prefrontal cortex. Low scores on this variable were related to poorer outcome on all measures. In addition, the frontal NAA/Cr ratio explained 17% to 30% of the variance in outcome. CONCLUSIONS: Prefrontal neuronal dysfunction is an inconsistent feature of early psychosis; rather, it is an early marker of poor prognosis across the first years of illness. The extent to which this can be used to guide treatment and whether it predicts outcome some years after first presentation are questions for further research.
Resumo:
The impact of depressed neonatal cerebral oxidative phosphorylation for diagnosing the severity of perinatal asphyxia was estimated by correlating the concentrations of phosphocreatine (PCr) and ATP as determined by magnetic resonance spectroscopy with the degree of hypoxic-ischemic encephalopathy (HIE) in 23 asphyxiated term neonates. Ten healthy age-matched neonates served as controls. In patients, the mean concentrations +/- SD of PCr and ATP were 0.99 +/- 0.46 mmol/L (1.6 +/- 0.2 mmol/L) and 0.99 +/- 0.35 mmol/L (1.7 +/- 0.2 mmol/L), respectively (normal values in parentheses). [PCr] and [ATP] correlated significantly with the severity of HIE (r = 0.85 and 0.9, respectively, p < 0.001), indicating that the neonatal encephalopathy is the clinical manifestation of a marred brain energy metabolism. Neurodevelopmental outcome was evaluated in 21 children at 3, 9, and 18 mo. Seven infants had multiple impairments, five were moderately handicapped, five had only mild symptoms, and four were normal. There was a significant correlation between the cerebral concentrations of PCr or ATP at birth and outcome (r = 0.8, p < 0.001) and between the degree of neonatal neurologic depression and outcome (r = 0.7). More important, the outcome of neonates with moderate HIE could better be predicted with information from quantitative 31P magnetic resonance spectroscopy than from neurologic examinations. In general, the accuracy of outcome predictability could significantly be increased by adding results from 31P magnetic resonance spectroscopy to the neonatal neurologic score, but not vice versa. No correlation with outcome was found for other perinatal risk factors, including Apgar score.
Resumo:
To study the role of early energetic abnormalities in the subsequent development of heart failure, we performed serial in vivo combined magnetic resonance imaging (MRI) and (31)P magnetic resonance spectroscopy (MRS) studies in mice that underwent pressure-overload following transverse aorta constriction (TAC). After 3 wk of TAC, a significant increase in left ventricular (LV) mass (74 +/- 4 vs. 140 +/- 26 mg, control vs. TAC, respectively; P < 0.000005), size [end-diastolic volume (EDV): 48 +/- 3 vs. 61 +/- 8 microl; P < 0.005], and contractile dysfunction [ejection fraction (EF): 62 +/- 4 vs. 38 +/- 10%; P < 0.000005] was observed, as well as depressed cardiac energetics (PCr/ATP: 2.0 +/- 0.1 vs. 1.3 +/- 0.4, P < 0.0005) measured by combined MRI/MRS. After an additional 3 wk, LV mass (140 +/- 26 vs. 167 +/- 36 mg; P < 0.01) and cavity size (EDV: 61 +/- 8 vs. 76 +/- 8 microl; P < 0.001) increased further, but there was no additional decline in PCr/ATP or EF. Cardiac PCr/ATP correlated inversely with end-systolic volume and directly with EF at 6 wk but not at 3 wk, suggesting a role of sustained energetic abnormalities in evolving chamber dysfunction and remodeling. Indeed, reduced cardiac PCr/ATP observed at 3 wk strongly correlated with changes in EDV that developed over the ensuing 3 wk. These data suggest that abnormal energetics due to pressure overload predict subsequent LV remodeling and dysfunction.
Resumo:
BACKGROUND: Fatigability increases while the capacity for mitochondrial energy production tends to decrease significantly with age. Thus, diminished mitochondrial function may contribute to higher levels of fatigability in older adults. METHODS: The relationship between fatigability and skeletal muscle mitochondrial function was examined in 30 participants aged 78.5 ± 5.0 years (47% female, 93% white), with a body mass index of 25.9 ± 2.7 kg/m(2) and usual gait-speed of 1.2 ± 0.2 m/s. Fatigability was defined using rating of perceived exertion (6-20 point Borg scale) after a 5-minute treadmill walk at 0.72 m/s. Phosphocreatine recovery in the quadriceps was measured using (31)P magnetic resonance spectroscopy and images of the quadriceps were captured to calculate quadriceps volume. ATPmax (mM ATP/s) and oxidative capacity of the quadriceps (ATPmax·Quadriceps volume) were calculated. Peak aerobic capacity (VO2peak) was measured using a modified Balke protocol. RESULTS: ATPmax·Quadriceps volume was associated with VO2peak and was 162.61mM ATP·mL/s lower (p = .03) in those with high (rating of perceived exertion ≥10) versus low (rating of perceived exertion ≤9) fatigability. Participants with high fatigability required a significantly higher proportion of VO2peak to walk at 0.72 m/s compared with those with low fatigability (58.7 ± 19.4% vs 44.9 ± 13.2%, p < .05). After adjustment for age and sex, higher ATPmax was associated with lower odds of having high fatigability (odds ratio: 0.34, 95% CI: 0.11-1.01, p = .05). CONCLUSIONS: Lower capacity for oxidative phosphorylation in the quadriceps, perhaps by contributing to lower VO2peak, is associated with higher fatigability in older adults.
Resumo:
Conventional (CONV) neuromuscular electrical stimulation (NMES) (i.e., short pulse duration, low frequencies) induces a higher energetic response as compared to voluntary contractions (VOL). In contrast, wide-pulse, high-frequency (WPHF) NMES might elicit-at least in some subjects (i.e., responders)-a different motor unit recruitment compared to CONV that resembles the physiological muscle activation pattern of VOL. We therefore hypothesized that for these responder subjects, the metabolic demand of WPHF would be lower than CONV and comparable to VOL. 18 healthy subjects performed isometric plantar flexions at 10% of their maximal voluntary contraction force for CONV (25 Hz, 0.05 ms), WPHF (100 Hz, 1 ms) and VOL protocols. For each protocol, force time integral (FTI) was quantified and subjects were classified as responders and non-responders to WPHF based on k-means clustering analysis. Furthermore, a fatigue index based on FTI loss at the end of each protocol compared with the beginning of the protocol was calculated. Phosphocreatine depletion (ΔPCr) was assessed using 31P magnetic resonance spectroscopy. Responders developed four times higher FTI's during WPHF (99 ± 37 ×103 N.s) than non-responders (26 ± 12 ×103 N.s). For both responders and non-responders, CONV was metabolically more demanding than VOL when ΔPCr was expressed relative to the FTI. Only for the responder group, the ∆PCr/FTI ratio of WPHF (0.74 ± 0.19 M/N.s) was significantly lower compared to CONV (1.48 ± 0.46 M/N.s) but similar to VOL (0.65 ± 0.21 M/N.s). Moreover, the fatigue index was not different between WPHF (-16%) and CONV (-25%) for the responders. WPHF could therefore be considered as the less demanding NMES modality-at least in this subgroup of subjects-by possibly exhibiting a muscle activation pattern similar to VOL contractions.