194 resultados para Peripheral-nerve Stimulation
em Université de Lausanne, Switzerland
Resumo:
Diabetes mellitus (DM) is a major cause of peripheral neuropathy. More than 220 million people worldwide suffer from type 2 DM, which will, in approximately half of them, lead to the development of diabetic peripheral neuropathy. While of significant medical importance, the pathophysiological changes present in DPN are still poorly understood. To get more insight into DPN associated with type 2 DM, we decided to use the rodent model of this form of diabetes, the db/db mice. During the in-vivo conduction velocity studies on these animals, we observed the presence of multiple spiking followed by a single stimulation. This prompted us to evaluate the excitability properties of db/db peripheral nerves. Ex-vivo electrophysiological evaluation revealed a significant increase in the excitability of db/db sciatic nerves. While the shape and kinetics of the compound action potential of db/db nerves were the same as for control nerves, we observed an increase in the after-hyperpolarization phase (AHP) under diabetic conditions. Using pharmacological inhibitors we demonstrated that both the peripheral nerve hyperexcitability (PNH) and the increased AHP were mostly mediated by the decreased activity of Kv1-channels. Importantly, we corroborated these data at the molecular level. We observed a strong reduction of Kv1.2 channel presence in the juxtaparanodal regions of teased fibers in db/db mice as compared to control mice. Quantification of the amount of both Kv1.2 isoforms in DRG neurons and in the endoneurial compartment of peripheral nerve by Western blotting revealed that less mature Kv1.2 was integrated into the axonal membranes at the juxtaparanodes. Our observation that peripheral nerve hyperexcitability present in db/db mice is at least in part a consequence of changes in potassium channel distribution suggests that the same mechanism also mediates PNH in diabetic patients. ∗Current address: Department of Physiology, UCSF, San Francisco, CA, USA.
Resumo:
Peripheral nerve hyperexcitability (PNH) is one of the distal peripheral neuropathy phenotypes often present in patients affected by type 2 diabetes mellitus (T2DM). Through in vivo and ex vivo electrophysiological recordings in db/db mice, a model of T2DM, we observed that, in addition to reduced nerve conduction velocity, db/db mice also develop PNH. By using pharmacological inhibitors, we demonstrated that the PNH is mediated by the decreased activity of K(v)1-channels. In agreement with these data, we observed that the diabetic condition led to a reduced presence of the K(v)1.2-subunits in juxtaparanodal regions of peripheral nerves in db/db mice and in nerve biopsies from T2DM patients. Together, these observations indicate that the T2DM condition leads to potassium channel-mediated PNH, thus identifying them as a potential drug target to treat some of the DPN related symptoms.
Resumo:
It has been already demonstrated that thyroid hormone (T3) is one of the most important stimulating factors in peripheral nerve regeneration. We have recently shown that local administration of T3 in silicon tubes at the level of the transected rat sciatic nerve enhanced axonal regeneration and improved functional recovery. Silicon, however, cannot be used in humans because it causes a chronic inflammatory reaction. Therefore, in order to provide future clinical applications of thyroid hormone in human peripheral nerve lesions, we carried out comparative studies on the regeneration of transected rat sciatic nerve bridged either by biodegradable P(DLLA-(-CL) or by silicon nerve guides, both guides filled with either T3 or phosphate buffer. Our macroscopic observation revealed that 85% of the biodegradable guides allowed the expected regeneration of the transected sciatic nerve. The morphological, morphometric and electrophysiological analysis showed that T3 in biodegradable guides induces a significant increase in the number of myelinated regenerated axons (6862 +/- 1831 in control vs. 11799 +/- 1163 in T3-treated). Also, T3 skewed the diameter of myelinated axons toward larger values than in controls. Moreover, T3 increases the compound muscle action potential amplitude of the flexor and extensor muscles of the treated rats. This T3 stimulation in biodegradable guides was equally well to that obtained by using silicone guides. In conclusion, the administration of T3 in biodegradable guides significantly improves sciatic nerve regeneration, confirming the feasibility of our technique to provide a serious step towards future clinical application of T3 in human peripheral nerve injuries.
Resumo:
Allodynia (pain in response to normally non painful stimulation) and paresthesia (erroneous sensory experience) are two debilitating symptoms of neuropathic pain. These stem, at least partly, from profound changes in the non-nociceptive sensory pathway that comprises large myelinated neuronal afferents terminating in the gracile and cuneate nuclei. Further than neuronal changes, well admitted evidence indicates that glial cells (especially in the spinal cord) are key actors in neuropathic pain, in particular the possible alteration in astrocytic capacity to reuptake neurotransmitters (glutamate and GABA). Yet, the possibility of such a changed astrocytic scavenging capacity remains unexplored in the dorsal column pathway. The present study was therefore undertaken to assess whether peripheral nerve injury (spared nerve injury model, SNI) could trigger a glial reaction, and especially changes in glutamate and GABA transporters, in the gracile nucleus. SNI surgery was performed on male Sprague-Dawley rats. Seven days after surgery, rats were used for immunofluorescence (fixation and brain slicing), western-blot (fresh brain freezing and protein extraction) or GABA reuptake on synaptosomes. We found that SNI results in a profound glial reaction in the ipsilateral gracile nucleus. This reaction was characterized by an enhanced immunolabelling for microglial marker Iba1 as well as astrocytic protein GFAP (further confirmed by western-blot, p <0.05, n = 7). These changes were not observed in sham animals. Immunofluorescence and western-blot analysis shows that the GABA transporter GAT-1 is upregulated in the ipsilateral gracile nucleus (p <0.001; n = 7), with no detectable change in GAT-3 or glutamate transporters EAAT-1 and EAAT-2. Double immunoflurescence shows that GAT-1 and GFAP colocalize within the same cells. Furthermore, the upregulation of GFAP and GAT-1 were shown to occur all along the rostrocaudal axis of the gracile nucleus. Finally, synaptosomes from ipsilateral gracile nucleus show an increased capacity to reuptake GABA. Together, the data presented herein show that glial cells in the gracile nucleus react to neuropathic lesion, in particular through an upregulation of the GABA transporter GAT-1. Hence, this study points to role of an increased GABA transport in the dorsal column nuclei in neuropathic pain, calling attention to GAT-1 as a putative future pharmacological target to treat allodynia and paresthesia.
Resumo:
An ideal substitute to treat a nerve gap has not been found. Initially, silicone conduits were employed. Later, conduits were fabricated from collagen or polyesters carbonates. More recently, it has been shown that a bioresorbable material, poly-3-hydroxybutyrate (PHB), can enhance nerve repair. The present investigation shows the use of fibrin as a conduit to guide nerve regeneration and bridge nerve defects. In this study we prepared and investigated a novel nerve conduit made from fibrin glue. Using a rodent sciatic nerve injury model (10-mm gap), we compared the extent of nerve regeneration through the new fibrin conduits versus established PHB conduits. After 2 and 4 weeks, conduits containing proximal and distal stumps were harvested. We evaluated the initial axon and Schwann cell stimulation using immunohistochemistry. The conduits presented full tissue integration and were completely intact. Axons crossed the gap after 1 month. Immunohistochemistry using the axonal marker PGP 9.5 showed a superior nerve regeneration distance in the fibrin conduit compared with PHB (4.1 mm versus 1.9 mm). Schwann cell intrusion (S100 staining) was similarly enhanced in the fibrin conduits, both from the proximal (4.2 mm versus 2.1 mm) and distal ends (3.2 mm versus 1.7 mm). These findings suggest an advantage of the new fibrin conduit for the important initial phase of peripheral nerve regeneration. The use of fibrin glue as a conduit is a step toward a usable graft to bridge peripheral nerve lesions. This might be clinically interesting, given the widespread acceptance of fibrin glue among the surgical community.
Resumo:
INTRODUCTION: As it might lead to less discomfort, magnetic nerve stimulation (MNS) is increasingly used as an alternative to electrical stimulation methods. Yet, MNS and electrical nerve stimulation (ENS) and electrical muscle stimulation (EMS) have not been formally compared for the evaluation of plantar flexor neuromuscular function. METHODS: We quantified plantar flexor neuromuscular function with ENS, EMS and MNS in 10 volunteers in fresh and fatigued muscles. Central alterations were assessed through changes in voluntary activation level (VAL) and peripheral function through changes in M-wave, twitch and doublet (PS100) amplitudes. Discomfort associated with 100-Hz paired stimuli delivered with each method was evaluated on a 10-cm visual analog scale. RESULTS: VAL, agonist and antagonist M-wave amplitudes and PS100 were similar between the different methods in both fresh and fatigued states. Potentiated peak twitch was lower in EMS compared to ENS, whereas no difference was found between ENS and MNS for any parameter. Discomfort associated with MNS (1.5 ± 1.4 cm) was significantly less compared to ENS (5.5 ± 1.9 cm) and EMS (4.2 ± 2.6 cm) (p < 0.05). CONCLUSION: When PS100 is used to evaluate neuromuscular properties, MNS, EMS and ENS can be used interchangeably for plantar flexor neuromuscular function assessment as they provide similar evaluation of central and peripheral factors in unfatigued and fatigued states. Importantly, electrical current spread to antagonist muscles was similar between the three methods while discomfort from MNS was much less compared to ENS and EMS. MNS may be potentially employed to assess neuromuscular function of plantar flexor muscles in fragile populations.
Resumo:
Peripheral nerve injury is a serious problem affecting significantly patients' life. Autografts are the "gold standard" used to repair the injury gap, however, only 50% of patients fully recover from the trauma. Artificial conduits are a valid alternative to repairing peripheral nerve. They aim at confining the nerve environment throughout the regeneration process, and providing guidance to axon outgrowth. Biocompatible materials have been carefully designed to reduce inflammation and scar tissue formation, but modifications of the inner lumen are still required in order to optimise the scaffolds. Biomicking the native neural tissue with extracellular matrix fillers or coatings showed great promises in repairing longer gaps and extending cell survival. In addition, extracellular matrix molecules provide a platform to further bind growth factors that can be released in the system over time. Alternatively, conduit fillers can be used for cell transplantation at the injury site, reducing the lag time required for endogenous Schwann cells to proliferate and take part in the regeneration process. This review provides an overview on the importance of extracellular matrix molecules in peripheral nerve repair.
Resumo:
Traumatic injuries resulting in peripheral nerve lesions often require a graft to bridge the gap. Although autologous nerve auto-graft is still the first-choice strategy in reconstructions, it has the severe disadvantage of the sacrifice of a functional nerve. Cell transplantation in a bioartificial conduit is an alternative strategy to create a favourable environment for nerve regeneration. We decided to test new fibrin nerve conduits seeded with various cell types (primary Schwann cells and adult stem cells differentiated to a Schwann cell-like phenotype) for repair of sciatic nerve injury. Two weeks after implantation, the conduits were removed and examined by immunohistochemistry for axonal regeneration (evaluated by PGP 9.5 expression) and Schwann cell presence (detected by S100 expression). The results show a significant increase in axonal regeneration in the group of fibrin seeded with Schwann cells compared with the empty fibrin conduit. Differentiated adipose-derived stem cells also enhanced regeneration distance in a similar manner to differentiated bone marrow mesenchymal stem cells. These observations suggest that adipose-derived stem cells may provide an effective cell population, without the limitations of the donor-site morbidity associated with isolation of Schwann cells, and could be a clinically translatable route towards new methods to enhance peripheral nerve repair.
Resumo:
After peripheral nerve injury in adult mammals, reestablishment of functional connections depends on several parameters including neurotrophic factors, the extracellular matrix, and hormones. However, little is known about the contribution of hormones to peripheral nerve regeneration. Thyroid hormones, which are required for the development and maturation of the central nervous system, are also important for the development of peripheral nerves. The action of triiodothyronine (T3) on responsive cells is mediated through nuclear thyroid hormone receptors (TRs) which modulate the expression of specific genes in target cells. Thus, to study the effect of T3, it is first necessary to know whether the target tissues possess TRs. The fact that sciatic nerve cells possess functional TRs suggests that these cells can respond to T3 and, as a consequence, that thyroid hormone may be involved in peripheral nerve regeneration. The silicone nerve guide model provides an excellent system to study the action of local administration of T3. Evidence from such studies demonstrate that animals treated locally with T3 at the level of transection have more complete regeneration of sciatic nerve and better functional recovery. Among the possible regulatory mechanisms by which T3 enhances peripheral nerve regeneration is rapid action on both axotomized neurons and Schwann cells which, in turn, produce a lasting and stimulatory effect on peripheral nerve regeneration. It is probable that T3 up- or down-regulates gene expression of one or more growth factors, extracellular matrix, or cell adhesion molecules, all of which stimulate peripheral nerve regeneration. This could explain the greater effect of T3 on nerve regeneration compared with the effect of any one growth factor or adhesion molecule.
Resumo:
Peripheral nerve injuries with loss of nervous tissue are a significant clinical problem and are currently treated using autologous nerve transplants. To avoid the need for donor nerve, which results in additional morbidity such as loss of sensation and scarring, alternative bridging methods have been sought. Recently we showed that an artificial nerve conduit moulded from fibrin glue is biocompatible to nerve regeneration. In this present study, we have used the fibrin conduit or a nerve graft to bridge either a 10 mm or 20 mm sciatic nerve gap and analyzed the muscle recovery in adult rats after 16 weeks. The gastrocnemius muscle weights of the operated side were similar for both gap sizes when treated with nerve graft. In contrast, muscle weight was 48.32 ± 4.96% of the contra-lateral side for the 10 mm gap repaired with fibrin conduit but only 25.20 ± 2.50% for the 20 mm gap repaired with fibrin conduit. The morphology of the muscles in the nerve graft groups showed an intact, ordered structure, with the muscle fibers grouped in fascicles whereas the 20 mm nerve gap fibrin group had a more chaotic appearance. The mean area and diameter of fast type fibers in the 20 mm gap repaired with fibrin conduits were significantly (P<0.01) worse than those of the corresponding 10 mm gap group. In contrast, both gap sizes treated with nerve graft showed similar fiber size. Furthermore, the 10 mm gaps repaired with either nerve graft or fibrin conduit showed similar muscle fiber size. These results indicate that the fibrin conduit can effectively treat short nerve gaps but further modification such as the inclusion of regenerative cells may be required to attain the outcomes of nerve graft for long gaps.
Resumo:
The current study investigates a new model of barrel cortex activation using stimulation of the infraorbital branch of the trigeminal nerve. A robust and reproducible activation of the rat barrel cortex was obtained following trigeminal nerve stimulation. Blood oxygen level-dependent (BOLD) effects were obtained in the primary somatosensory barrel cortex (S1BF), the secondary somatosensory cortex (S2) and the motor cortex. These cortical areas were reached from afferent pathways from the trigeminal ganglion, the trigeminal nuclei and thalamic nuclei from which neurons project their axons upon whisker stimulation. The maximum BOLD responses were obtained for a stimulus frequency of 1 Hz, a stimulus pulse width of 100 μs and for current intensities between 1.5 and 3 mA. The BOLD response was nonlinear as a function of frequency and current intensity. Additionally, modeling BOLD responses in the rat barrel cortex from separate cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) measurements showed good agreement with the shape and amplitude of measured BOLD responses as a function of stimulus frequency and will potentially allow to identify the sources of BOLD nonlinearities. Activation of the rat barrel cortex using trigeminal nerve stimulation will contribute to the interpretation of the BOLD signals from functional magnetic resonance imaging studies.
Resumo:
Collagen nerve guides are used clinically for peripheral nerve defects, but their use is generally limited to lesions up to 3 cm. In this study we combined collagen conduits with cells as an alternative strategy to support nerve regeneration over longer gaps. In vitro cell adherence to collagen conduits (NeuraGen(®) nerve guides) was assessed by scanning electron microscopy. For in vivo experiments, conduits were seeded with either Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC) or left empty (control group), conduits were used to bridge a 1cm gap in the rat sciatic nerve and after 2-weeks immunohistochemical analysis was performed to assess axonal regeneration and SC infiltration. The regenerative cells showed good adherence to the collagen walls. Primary SC showed significant improvement in distal stump sprouting. No significant differences in proximal regeneration distances were noticed among experimental groups. dMSC and dASC-loaded conduits showed a diffuse sprouting pattern, while SC-loaded showed an enhanced cone pattern and a typical sprouting along the conduits walls, suggesting an increased affinity for the collagen type I fibrillar structure. NeuraGen(®) guides showed high affinity of regenerative cells and could be used as efficient vehicle for cell delivery. However, surface modifications (e.g. with extracellular matrix molecule peptides) of NeuraGen(®) guides could be used in future tissue-engineering applications to better exploit the cell potential.
Resumo:
We systematically reviewed the safety and efficacy of perineural dexamethasone as an adjunct for peripheral nerve blockade in 29 controlled trials of 1695 participants. We grouped trials by the duration of local anaesthetic action (short- or medium- vs long-term). Dexamethasone increased the mean (95% CI) duration of analgesia by 233 (172-295) min when injected with short- or medium-term action local anaesthetics and by 488 (419-557) min when injected with long-term action local anaesthetics, p < 0.00001 for both. However, these results should be interpreted with caution due to the extreme heterogeneity of results, with I2 exceeding 90% for both analyses. Meta-regression did not show an interaction between dose of perineural dexamethasone (4-10 mg) and duration of analgesia (r2 = 0.02, p = 0.54). There were no differences between 4 and 8 mg dexamethasone on subgroup analysis.
Resumo:
Introduction: To investigate differences in twitch and M-wave potentiation in the quadriceps femoris when electrical stimulation is applied over the quadriceps muscle belly versus the femoral nerve trunk. Methods: M-waves and mechanical twitches were evoked using direct quadriceps muscle and femoral nerve stimulation between 48 successive isometric maximal voluntary contractions (MVC) from 10 young, healthy subjects. Potentiation was investigated by analyzing the changes in M-wave amplitude recorded from the vastus medialis (VM) and vastus lateralis (VL) muscles and in quadriceps peak twitch force. Results: Potentiation of twitch, VM M-wave, and VL M-wave were greater for femoral nerve than for direct quadriceps stimulation (P<0.05). Despite a 50% decrease in MVC force, the amplitude of the M-waves increased significantly during exercise. Conclusions: In addition to enhanced electrogenic Na(+) -K(+) pumping, other factors (such as synchronization in activation of muscle fibers and muscle architectural properties) might significantly influence the magnitude of M-wave enlargement. © 2013 Wiley Periodicals, Inc.