61 resultados para Period Effects
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: To analyze the components of the favorable trends in gastric cancer in Europe. METHODS: From official certified deaths from gastric cancer and population estimates for 42 countries of the European geographical region, during the period 1950 to 2007, age-standardized death rates (World Standard Population) were computed, and an age-period-cohort analysis was performed. RESULTS: Central and Northern countries with lower rates in the 2005 to 2007 period, such as France (5.28 and 1.93/100,000, men and women respectively) and Sweden (4.49 and 2.21/100,000), had descending period and cohort effects that decreased steeply from the earliest cohorts until those born in the 1940s, to then stabilize. Former nonmarket economy countries had mortality rates greater than 20/100,000 men and 10/100,000 women, and displayed a later start in the cohort effect fall, which continued in the younger cohorts. Mortality remained high in some countries of Southern and Eastern Europe. CONCLUSIONS: The decrease in gastric cancer mortality was observed in both cohort and period effects but was larger in the cohorts, suggesting that the downward trends are likely to persist in countries with higher rates. In a few Western countries with very low rates an asymptote appears to have been reached for cohorts born after the 1940s, particularly in women.
Resumo:
BACKGROUND: In contrast with established evidence linking high doses of ionizing radiation with childhood cancer, research on low-dose ionizing radiation and childhood cancer has produced inconsistent results. OBJECTIVE: We investigated the association between domestic radon exposure and childhood cancers, particularly leukemia and central nervous system (CNS) tumors. METHODS: We conducted a nationwide census-based cohort study including all children < 16 years of age living in Switzerland on 5 December 2000, the date of the 2000 census. Follow-up lasted until the date of diagnosis, death, emigration, a child's 16th birthday, or 31 December 2008. Domestic radon levels were estimated for each individual home address using a model developed and validated based on approximately 45,000 measurements taken throughout Switzerland. Data were analyzed with Cox proportional hazard models adjusted for child age, child sex, birth order, parents' socioeconomic status, environmental gamma radiation, and period effects. RESULTS: In total, 997 childhood cancer cases were included in the study. Compared with children exposed to a radon concentration below the median (< 77.7 Bq/m3), adjusted hazard ratios for children with exposure ≥ the 90th percentile (≥ 139.9 Bq/m3) were 0.93 (95% CI: 0.74, 1.16) for all cancers, 0.95 (95% CI: 0.63, 1.43) for all leukemias, 0.90 (95% CI: 0.56, 1.43) for acute lymphoblastic leukemia, and 1.05 (95% CI: 0.68, 1.61) for CNS tumors. CONCLUSIONS: We did not find evidence that domestic radon exposure is associated with childhood cancer, despite relatively high radon levels in Switzerland.
Resumo:
Swiss death certification data over the period 1951-1984 for total cancer mortality and 30 major cancer sites in the population aged 25 to 74 years were analysed using a log-linear Poisson model with arbitrary constraints on the parameters to isolate the effects of birth cohort, calendar period of death and age. The overall pattern of total cancer mortality in males was stable for period values and showed some moderate decreases in cohort values restricted to the generations born after 1930. Cancer mortality trends were more favourable in females, with steady, though moderate, declines in both cohort and period values. According to the estimates from the model, the worst affected generation for male lung cancer was that born around 1910, and a flattening of trends or some moderate decline was observed for more recent cohorts, although this decline was considerably more limited than in other European countries. There were decreases in cohort and period values for stomach, intestine and oesophageal cancer in both sexes and (cervix) uteri in females. Increases were observed in both cohort and period trends for pancreas and liver in males and for several other neoplasms, including prostate, brain, leukaemias and lymphomas, restricted, however, for the latter sites, to the earlier cohorts and hence partly attributable to improved diagnosis and certification in the elderly. Although age values for lung cancer in females were around 10-times lower than in males, upward trends in female lung cancer cohort values were observed in subsequent cohorts and for period values from the late 1960's onwards. Therefore, future trends in female lung cancer mortality should continue to be monitored. The application of these age/period/cohort models thus provides a summary guide for the reading and interpretation of cancer mortality trends, although it cannot replace careful inspection of single age-specific rates.
Resumo:
STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.
Resumo:
The potential of ochratoxin A (OTA) to damage brain cells was studied by using a three-dimensional cell culture system as model for the developing brain. Aggregating cell cultures of foetal rat telencephalon were tested either during an early developmental period, or during a phase of advanced maturation, over a wide range of OTA concentrations (0.4 nM to 50 microM). By monitoring changes in activities of cell type-specific enzymes (ChAt and GAD, for cholinergic and GABAergic neurones, respectively, GS for astrocytes and CNP for oligodendrocytes), the concentration-dependent toxicity and neurodevelopmental effects of OTA were determined. OTA proved to be highly toxic, since a 10-day treatment at 50 nM caused a general cytotoxicity in both mature and immature cultures. At 10 nM of OTA, cell type-specific effects were observed: in immature cultures, a loss in neuronal and oligodendroglial enzyme activities, and an increase in the activity of the astroglial marker glutamine synthetase were found, Furthermore, at 2 and 10 nM of OTA, a clustering of microglial cells was observed. In mature cultures, OTA was somewhat less potent, but caused a similar pattern of toxic effects. A 24 h-treatment with OTA resulted in a concentration-dependent decrease in protein synthesis, with IC50 values of 25 nM and 33 nM for immature and mature cultures respectively. Acute (24 h) treatment at high OTA concentrations (10 to 50 microM) caused a significant increase in reactive oxygen species formation, as measured by the intracellular oxidation of 2',7'-dichlorofluorescin. These results suggest that OTA has the potential to be a potent toxicant to brain cells, and that its effects at nanomolar concentrations are primarily due to the inhibition of protein synthesis, whereas ROS seem not to be involved in the toxicity mediated by a chronic exposure to OTA at such low concentrations.
Resumo:
HYPOTHESIS: Liver transplantation results in hepatic denervation. This may produce alterations of liver energy and substrate metabolism, which may contribute to weight gain after liver transplantation. DESIGN: Prospective clinical study. SETTING: Liver transplantation clinics in a university hospital. PATIENTS: Seven nondiabetic patients with cirrhosis were recruited while on a waiting list for liver transplantation. Seven healthy subjects were recruited as controls. INTERVENTION: Orthotopic liver transplantation. MAIN OUTCOME MEASURES: Evaluation of energy and substrate metabolism after ingestion of a glucose load with indirect calorimetry was performed before, 2 to 6 weeks after, and 5 to 19 months after transplantation. Whole-body glucose oxidation and storage and glucose-induced thermogenesis were calculated. RESULTS: Patients with cirrhosis had modestly elevated resting energy expenditure and normal glucose-induced thermogenesis and postprandial glucose oxidation and storage. These measures remained unchanged after liver transplantation despite a significant increase in postprandial glycemia. Patients, however, gained an average of 3 kg of body weight after 5 to 19 months compared with their weight before transplantation. CONCLUSION: Liver denervation secondary to transplantation does not lead to alterations of energy metabolism after ingestion of a glucose load.
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia Conclusion Based on these data, we proposed a model for PSIP1 promoter activity involving a complex interplay between yet undefined regulatory elements to modulate gene expression.
Resumo:
Manual dexterity, a prerogative of primates, is under the control of the corticospinal (CS) tract. Because 90-95% of CS axons decussate, it is assumed that this control is exerted essentially on the contralateral hand. Consistently, unilateral lesion of the hand representation in the motor cortex is followed by a complete loss of dexterity of the contralesional hand. During the months following lesion, spontaneous recovery of manual dexterity takes place to a highly variable extent across subjects, although largely incomplete. In the present study, we tested the hypothesis that after a significant postlesion period, manual performance in the ipsilesional hand is correlated with the extent of functional recovery in the contralesional hand. To this aim, ten adult macaque monkeys were subjected to permanent unilateral motor cortex lesion. Monkeys' manual performance was assessed for each hand during several months postlesion, using our standard behavioral test (modified Brinkman board task) that provides a quantitative measure of reach and grasp ability. The ipsilesional hand's performance was found to be significantly enhanced over the long term (100-300 days postlesion) in six of ten monkeys, with the six exhibiting the best, though incomplete, recovery of the contralesional hand. There was a statistically significant correlation (r = 0.932; P < 0.001) between performance in the ipsilesional hand after significant postlesion period and the extent of recovery of the contralesional hand. This observation is interpreted in terms of different possible mechanisms of recovery, dependent on the recruitment of motor areas in the lesioned and/or intact hemispheres.
Resumo:
Over the last decade, mortality from oral and pharyngeal cancer has been declining in most European countries, but it had been increasing substantially in Hungary, Slovakia and a few other countries of central Europe, reaching rates comparable to those of lung cancer in several western European countries in males. To update trends in oral cancer mortality and further analyse the recent epidemic in central Europe, official death certifications for oral and pharyngeal cancer for 37 European countries were derived over the period 1970-2007, and an age-period-cohort model was fitted for selected countries. Male oral cancer mortality continued to decline in most European countries, including the Russian Federation, and, more importantly, it also started to decline in some of the countries with the highest male rates, i.e. Hungary and Slovakia; persisting rises were, however, observed in Belarus, Bulgaria and Romania. Oral cancer mortality rates for women were lower than in men and showed no appreciable trend over recent periods in the EU overall. Estimates from the age-period-cohort analysis for most selected countries showed a fall in effects for the cohorts born after the 1950s. For the period effect displayed a rise for the earlier periods, an inversion in the 1990s and a continuous fall up to the last studied period. Only some former non-market economy countries, like Romania, Ukraine and Lithuania, had rising cohort effect trends up to most recent generations. The major finding of this updated analysis of oral cancer mortality is the leveling of the epidemic for men in most European countries, including Hungary and other central European countries, where mortality from this cancer was exceedingly high. These trends essentially reflect the changes in alcohol and tobacco consumption in various populations.
Resumo:
This study examined the effects of intermittent hypoxic training (IHT) on skeletal muscle monocarboxylate lactate transporter (MCT) expression and anaerobic performance in trained athletes. Cyclists were assigned to two interventions, either normoxic (N; n = 8; 150 mmHg PIO2) or hypoxic (H; n = 10; ∼3000 m, 100 mmHg PIO2) over a three week training (5×1 h-1h30.week-1) period. Prior to and after training, an incremental exercise test to exhaustion (EXT) was performed in normoxia together with a 2 min time trial (TT). Biopsy samples from the vastus lateralis were analyzed for MCT1 and MCT4 using immuno-blotting techniques. The peak power output (PPO) increased (p<0.05) after training (7.2% and 6.6% for N and H, respectively), but VO2max showed no significant change. The average power output in the TT improved significantly (7.3% and 6.4% for N and H, respectively). No differences were found in MCT1 and MCT4 protein content, before and after the training in either the N or H group. These results indicate there are no additional benefits of IHT when compared to similar normoxic training. Hence, the addition of the hypoxic stimulus on anaerobic performance or MCT expression after a three-week training period is ineffective.
Resumo:
BACKGROUND AND OBJECTIVES: Cytochrome P450 (CYP) 3A4 is the main CYP isozyme involved in methadone metabolism. We investigated the influence of grapefruit juice, which contains inhibitors of intestinal CYP3A, on the steady-state pharmacokinetics of methadone. METHODS: For 5 days, 8 patients undergoing methadone maintenance treatment received 200 mL water or grapefruit juice 30 minutes before and again together with their daily dose of methadone. Blood sampling for R-, S-, and R,S-methadone plasma determination was performed over a 24-hour period. CYP3A activity was determined by measuring the plasma 1'-hydroxymidazolam/midazolam ratio. RESULTS: A decrease in the midazolam ratio was measured in all patients after grapefruit juice (mean +/- SD before grapefruit juice, 9.3 +/- 5.9; mean +/- SD after grapefruit juice, 3.9 +/- 1.2; P <.05). Grapefruit juice led to a mean 17% increase in the area under the curve extrapolated to 24 hours for both enantiomers of methadone (range, 3% to 29% [P <.005]; range, -4% to 37% [P <.05]; and range, 1% to 32% [P <.01]; for R-, S-, and R,S-methadone, respectively). A similar increase in peak level and decrease in apparent clearance were measured with grapefruit juice, whereas time to peak level, terminal half-life, and apparent volume during the terminal phase of R-, S-, and R,S-methadone were not affected by grapefruit juice. No symptom of overmedication was either detected by the clinical staff or reported by the patients. CONCLUSIONS: Grapefruit juice administration is associated with a modest increase in methadone bioavailability, which is not expected to endanger patients. However, it cannot be excluded that a much stronger effect may occur in some patients, and thus grapefruit juice intake is not recommended during methadone maintenance treatment, in particular in patients initiating such a treatment.
Resumo:
In contrast to mice from the majority of inbred strains, BALB mice develop aberrant Th2 responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of Interleukin 4, during the first 2 d of infection, by CD4+ T cells that express the Vbeta4-Valpha8 T cell receptors specific for a dominant I-A(d) restricted epitope of the LACK antigen from L. major. In contrast to this well established role of IL-4 in Th2 cell maturation, we have recently shown that, when limited to the initial period of activation of dendritic cells by L. major preceding T cell priming, IL-4 directs DCs to produce IL-12, promotes Th1 cell maturation and resistance to L. major in otherwise susceptible BALB/c mice. Thus, the antagonistic effects that IL-4 can have on Th cell development depend upon the nature of the cells (DCs or primed T cells) targeted for IL-4 signaling.
Resumo:
The aryl hydrocarbon receptor (AhR) is involved in a wide variety of biological and toxicological responses, including neuroendocrine signaling. Due to the complexity of neuroendocrine pathways in e.g. the hypothalamus and pituitary, there are limited in vitro models available despite the strong demand for such systems to study and predict neuroendocrine effects of chemicals. In this study, the applicability of the AhR-expressing rat hypothalamic GnV-3 cell line was investigated as a novel model to screen for neuroendocrine effects of AhR ligands using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as reference compound. The qRT-PCR analyses demonstrated the presence of several sets of neurotransmitter receptors in the GnV-3 cells. TCDD (10nM) altered neurotransmitter signaling by up-regulation of glutamate (Grik2), gamma-amino butyric acid (Gabra2) and serotonin (Ht2C) receptor mRNA levels. However, no significant changes in basal and serotonin-evoked intracellular Ca(2+) concentration ([Ca(2+)]i) or serotonin release were observed. On the other hand, TCDD de-regulated period circadian protein homolog 1 (Per1) and gonadotropin releasing hormone (Gnrh) mRNA levels within a 24-h time period. Both Per1 and Gnrh genes displayed a similar mRNA expression pattern in GnV-3 cells. Moreover, the involvement of AhR in TCDD-induced alteration of Neuropeptide Y (Npy) gene expression was found and confirmed by using siRNA targeted against Ahr in GnV-3 cells. Overall, the combined results demonstrate that GnV-3 cells may be a suitable model to predict some mechanisms of action and effects of AhR ligands in the hypothalamus.
Resumo:
Light influences sleep and alertness either indirectly through a well-characterized circadian pathway or directly through yet poorly understood mechanisms. Melanopsin (Opn4) is a retinal photopigment crucial for conveying nonvisual light information to the brain. Through extensive characterization of sleep and the electrocorticogram (ECoG) in melanopsin-deficient (Opn4(-/-)) mice under various light-dark (LD) schedules, we assessed the role of melanopsin in mediating the effects of light on sleep and ECoG activity. In control mice, a light pulse given during the habitual dark period readily induced sleep, whereas a dark pulse given during the habitual light period induced waking with pronounced theta (7-10 Hz) and gamma (40-70 Hz) activity, the ECoG correlates of alertness. In contrast, light failed to induce sleep in Opn4(-/-) mice, and the dark-pulse-induced increase in theta and gamma activity was delayed. A 24-h recording under a LD 1-hratio1-h schedule revealed that the failure to respond to light in Opn4(-/-) mice was restricted to the subjective dark period. Light induced c-Fos immunoreactivity in the suprachiasmatic nuclei (SCN) and in sleep-active ventrolateral preoptic (VLPO) neurons was importantly reduced in Opn4(-/-) mice, implicating both sleep-regulatory structures in the melanopsin-mediated effects of light. In addition to these acute light effects, Opn4(-/-) mice slept 1 h less during the 12-h light period of a LD 12ratio12 schedule owing to a lengthening of waking bouts. Despite this reduction in sleep time, ECoG delta power, a marker of sleep need, was decreased in Opn4(-/-) mice for most of the (subjective) dark period. Delta power reached after a 6-h sleep deprivation was similarly reduced in Opn4(-/-) mice. In mice, melanopsin's contribution to the direct effects of light on sleep is limited to the dark or active period, suggesting that at this circadian phase, melanopsin compensates for circadian variations in the photo sensitivity of other light-encoding pathways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior.
Resumo:
Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.