2 resultados para Penicillium chrysogenum

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhalation of fungal particles is a ubiquitous way of exposure to microorganisms during human life; however, this exposure may promote or exacerbate respiratory diseases only in particular exposure conditions and human genetic background. Depending on the fungal species and form, fungal particles can induce symptoms in the lung by acting as irritants, aeroallergens or pathogens causing infection. Some thermophilic species can even act in all these three ways (e.g. Aspergillus, Penicillium), mesophilic species being only involved in allergic and/or non-allergic airway diseases (e.g. Cladosporium, Alternaria, Fusarium). The goal of the present review is to present the current knowledge on the interaction between airborne fungal particles and the host immune system, to illustrate the differences of immune sensing of different fungal species and to emphasise the importance of conducting research on non-conventional mesophilic fungal species. Indeed, the diversity of fungal species we inhale and the complexity of their composition have a direct impact on fungal particle recognition and immune system decision to tolerate or respond to those particles, eventually leading to collateral damages promoting airway pathologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dermatophytes are the most common agents of superficial mycoses, and exclusively infect stratum corneum, nails or hair. Therefore, secreted proteolytic activity is considered a virulence trait of these fungi. In a medium containing protein as a sole nitrogen and carbon source Trichophyton rubrum secretes a metallocarboxypeptidase (TruMcpA) of the M14 family according to the MEROPS proteolytic enzyme database. TruMcpA is homologous to human pancreatic carboxypeptidase A, and is synthesized as a precursor in a preproprotein form. The propeptide is removed to generate the mature active enzyme alternatively by either one of two subtilisins which are concomitantly secreted by the fungus. In addition, T. rubrum was shown to possess two genes (TruSCPA and TruSCPB) encoding serine carboxypeptidases of the S10 family which are homologues of the previously characterized Aspergillus and Penicillium secreted acid carboxypeptidases. However, in contrast to the Aspergillus and Penicillium homologues, TruScpA and TruScpB enzymes are not secreted into the environment, but are membrane-associated with a glycosylphosphatidylinositol (GPI) anchor. During infection, T. rubrum secreted and GPI-anchored carboxypeptidases may contribute to fungal virulence by cooperating with previously characterized endoproteases and aminopeptidases in the degradation of compact keratinized tissues into assimilable amino acids and short peptides.