264 resultados para Pc, protein carbonilation

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard proteomics methods allow the relative quantitation of levels of thousands of proteins in two or more samples. While such methods are invaluable for defining the variations in protein concentrations which follow the perturbation of a biological system, they do not offer information on the mechanisms underlying such changes. Expanding on previous work [1], we developed a pulse-chase (pc) variant of SILAC (stable isotope labeling by amino acids in cell culture). pcSILAC can quantitate in one experiment and for two conditions the relative levels of proteins newly synthesized in a given time as well as the relative levels of remaining preexisting proteins. We validated the method studying the drug-mediated inhibition of the Hsp90 molecular chaperone, which is known to lead to increased synthesis of stress response proteins as well as the increased decay of Hsp90 "clients". We showed that pcSILAC can give information on changes in global cellular proteostasis induced by treatment with the inhibitor, which are normally not captured by standard relative quantitation techniques. Furthermore, we have developed a mathematical model and computational framework that uses pcSILAC data to determine degradation constants kd and synthesis rates Vs for proteins in both control and drug-treated cells. The results show that Hsp90 inhibition induced a generalized slowdown of protein synthesis and an increase in protein decay. Treatment with the inhibitor also resulted in widespread protein-specific changes in relative synthesis rates, together with variations in protein decay rates. The latter were more restricted to individual proteins or protein families than the variations in synthesis. Our results establish pcSILAC as a viable workflow for the mechanistic dissection of changes in the proteome which follow perturbations. Data are available via ProteomeXchange with identifier PXD000538.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The splice pattern of beta-amyloid precursor protein (beta-APP) has been studied in a variety of neuronal and glial cells and in brain cell aggregate cultures by the polymerase chain reaction (PCR). The brain-typical pattern, in which beta-APP695 is the dominant form, has been found only in aggregate cultures but not in any of the other cell types including neuronal cell lines. Selective elimination of glial cells from aggregates resulted in increased quantities of beta-APP695, whereas removal of neurons led to a reduction of beta-APP695 and to an elevation of beta-APP751 and beta-APP770. This shift of splice pattern was not observed in cocultures of the neuronal cell line PC 12 with primary astrocytes combined in a variety of cellular ratios. Blood serum, which is an essential component of these cultures, tested on aggregates, did not reduce the amount of beta-APP695 or have any marked effects on splice patterns generally. From these results it is concluded that investigations on brain-typical splicing of beta-APP require primary neurons. Neuronal cell lines may be no suitable model systems. Splicing events favoring production of beta-APP695 may mark an important, very early step of amyloid formation in the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elevated low-density lipoprotein (LDL) levels induce activation of the p38 mitogen-activated protein kinase (MAPK), a stress-activated protein kinase potentially participating in the development of atherosclerosis. The nature of the lipoprotein components inducing p38 MAPK activation has remained unclear however. We show here that both LDLs and high-density lipoproteins (HDLs) have the ability to stimulate the p38 MAPKs with potencies that correlate with their cholesterol content. Cholesterol solubilized in methyl-beta-cyclodextrin was sufficient to activate the p38 MAPK pathway. Liposomes made of phosphatidylcholine (PC) or sphingomyelin, the two main phospholipids found in lipoproteins, were unable to stimulate the p38 MAPKs. In contrast, PC liposomes loaded with cholesterol potently activated this pathway. Reducing the cholesterol content of LDL particles lowered their ability to activate the p38 MAPKs. Cell lines representative of the three main cell types found in blood vessels (endothelial cells, smooth muscle cells and fibroblasts) all activated their p38 MAPK pathway in response to LDLs or cholesterol-loaded PC liposomes. These results indicate that elevated cholesterol content in lipoproteins, as seen in hypercholesterolemia, favors the activation of the stress-activated p38 MAPK pathway in cells from the vessel wall, an event that might contribute to the development of atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : Les progrès techniques de la spectrométrie de masse (MS) ont contribué au récent développement de la protéomique. Cette technique peut actuellement détecter, identifier et quantifier des milliers de protéines. Toutefois, elle n'est pas encore assez puissante pour fournir une analyse complète des modifications du protéome corrélées à des phénomènes biologiques. Notre objectif était le développement d'une nouvelle stratégie pour la détection spécifique et la quantification des variations du protéome, basée sur la mesure de la synthèse des protéines plutôt que sur celle de la quantité de protéines totale. Pour cela, nous volions associer le marquage pulsé des protéines par des isotopes stables avec une méthode d'acquisition MS basée sur le balayage des ions précurseurs (precursor ion scan, ou PIS), afin de détecter spécifiquement les protéines ayant intégré les isotopes et d'estimer leur abondance par rapport aux protéines non marquées. Une telle approche peut identifier les protéines avec les plus hauts taux de synthèse dans une période de temps donnée, y compris les protéines dont l'expression augmente spécifiquement suite à un événement précis. Nous avons tout d'abord testé différents acides aminés marqués en combinaison avec des méthodes PIS spécifiques. Ces essais ont permis la détection spécifique des protéines marquées. Cependant, en raison des limitations instrumentales du spectromètre de masse utilisé pour les méthodes PIS, la sensibilité de cette approche s'est révélée être inférieure à une analyse non ciblée réalisée sur un instrument plus récent (Chapitre 2.1). Toutefois, pour l'analyse différentielle de deux milieux de culture conditionnés par des cellules cancéreuses humaines, nous avons utilisé le marquage métabolique pour distinguer les protéines d'origine cellulaire des protéines non marquées du sérum présentes dans les milieux de culture (Chapitre 2.2). Parallèlement, nous avons développé une nouvelle méthode de quantification nommée IBIS, qui utilise des paires d'isotopes stables d'acides aminés capables de produire des ions spécifiques qui peuvent être utilisés pour la quantification relative. La méthode IBIS a été appliquée à l'analyse de deux lignées cellulaires cancéreuses complètement marquées, mais de manière différenciée, par des paires d'acides aminés (Chapitre 2.3). Ensuite, conformément à l'objectif initial de cette thèse, nous avons utilisé une variante pulsée de l'IBIS pour détecter des modifications du protéome dans des cellules HeLa infectée par le virus humain Herpes Simplex-1 (Chapitre 2.4). Ce virus réprime la synthèse des protéines des cellules hôtes afin d'exploiter leur mécanisme de traduction pour la production massive de virions. Comme prévu, de hauts taux de synthèse ont été mesurés pour les protéines virales détectées, attestant de leur haut niveau d'expression. Nous avons de plus identifié un certain nombre de protéines humaines dont le rapport de synthèse et de dégradation (S/D) a été modifié par l'infection virale, ce qui peut donner des indications sur les stratégies utilisées par les virus pour détourner la machinerie cellulaire. En conclusion, nous avons montré dans ce travail que le marquage métabolique peut être employé de façon non conventionnelle pour étudier des dimensions peu explorées en protéomique. Summary : In recent years major technical advancements greatly supported the development of mass spectrometry (MS)-based proteomics. Currently, this technique can efficiently detect, identify and quantify thousands of proteins. However, it is not yet sufficiently powerful to provide a comprehensive analysis of the proteome changes correlated with biological phenomena. The aim of our project was the development of ~a new strategy for the specific detection and quantification of proteomé variations based on measurements of protein synthesis rather than total protein amounts. The rationale for this approach was that changes in protein synthesis more closely reflect dynamic cellular responses than changes in total protein concentrations. Our starting idea was to couple "pulsed" stable-isotope labeling of proteins with a specific MS acquisition method based on precursor ion scan (PIS), to specifically detect proteins that incorporated the label and to simultaneously estimate their abundance, relative to the unlabeled protein isoform. Such approach could highlight proteins with the highest synthesis rate in a given time frame, including proteins specifically up-regulated by a given biological stimulus. As a first step, we tested different isotope-labeled amino acids in combination with dedicated PIS methods and showed that this leads to specific detection of labeled proteins. Sensitivity, however, turned out to be lower than an untargeted analysis run on a more recent instrument, due to MS hardware limitations (Chapter 2.1). We next used metabolic labeling to distinguish the proteins of cellular origin from a high background of unlabeled (serum) proteins, for the differential analysis of two serum-containing culture media conditioned by labeled human cancer cells (Chapter 2.2). As a parallel project we developed a new quantification method (named ISIS), which uses pairs of stable-isotope labeled amino acids able to produce specific reporter ions, which can be used for relative quantification. The ISIS method was applied to the analysis of two fully, yet differentially labeled cancer cell lines, as described in Chapter 2.3. Next, in line with the original purpose of this thesis, we used a "pulsed" variant of ISIS to detect proteome changes in HeLa cells after the infection with human Herpes Simplex Virus-1 (Chapter 2.4). This virus is known to repress the synthesis of host cell proteins to exploit the translation machinery for the massive production of virions. As expected, high synthesis rates were measured for the detected viral proteins, confirming their up-regulation. Moreover, we identified a number of human proteins whose synthesis/degradation ratio (S/D) was affected by the viral infection and which could provide clues on the strategies used by the virus to hijack the cellular machinery. Overall, in this work, we showed that metabolic labeling can be employed in alternative ways to investigate poorly explored dimensions in proteomics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body composition, resting energy expenditure (REE), and whole body protein metabolism were studied in 26 young and 28 elderly Gambian men matched for body mass index during the dry season in a rural village in The Gambia. REE was measured by indirect calorimetry (hood system) in the fasting state and after five successive meals. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotopic enrichment of urinary ammonia over a period of 12 h after a single oral dose of [15N]glycine. Expressed in absolute value, REE was significantly lower in the elderly compared with the young group (3.21 +/- 0.07 vs. 4.04 +/- 0.07 kJ/min, P < 0.001) and when adjusted to body weight (3.29 +/- 0.05 vs. 3.96 +/- 0.05 kJ/min, P < 0.0001) and fat-free mass (FFM; 3.38 +/- 0.01 vs. 3.87 +/- 0.01 kJ/min, P < 0.0001). The rate of protein synthesis averaged 207 +/- 13 g protein/day in the elderly and 230 +/- 13 g protein/day in the young group, whereas protein breakdown averaged 184 +/- 13 g protein/day in the elderly and 203 +/- 13 g protein/day in the young group (nonsignificant). When values were adjusted for body weight or FFM, they did not reveal any difference between the two groups. It is concluded that the reduced REE adjusted for body composition observed in elderly Gambian men is not explained by a decrease in protein turnover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semliki Forest virus (SFV) vectors have been efficiently used for rapid high level expression of several G protein-coupled receptors. Here we describe the use of SFV vectors to express the alpha 1b-adrenergic receptor (AR) alone or in the presence of the G protein alpha q and/or beta 2 and gamma 2 subunits. Infection of baby hamster kidney (BHK) cells with recombinant SFV-alpha 1b-AR particles resulted in high specific binding activity of the alpha 1b-AR (24 pmol receptor/mg protein). Time-course studies indicated that the highest level of receptor expression was obtained 30 hours post-infection. The stimulation of BHK cells, with epinephrine led to a 5-fold increase in inositol phosphate (IP) accumulation, confirming the functional coupling of the receptor to G protein-mediated activation of phospholipase C. The SFV expression system represents a rapid and reproducible system to study the pharmacological properties and interactions of G protein coupled receptors and of G protein subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RP protein (RPP) array approach immobilizes minute amounts of cell lysates or tissue protein extracts as distinct microspots on NC-coated slide. Subsequent detection with specific antibodies allows multiplexed quantification of proteins and their modifications at a scale that is beyond what traditional techniques can achieve. Cellular functions are the result of the coordinated action of signaling proteins assembled in macromolecular complexes. These signaling complexes are highly dynamic structures that change their composition with time and space to adapt to cell environment. Their comprehensive analysis requires until now relatively large amounts of cells (>5 x 10(7)) due to their low abundance and breakdown during isolation procedure. In this study, we combined small scale affinity capture of the T-cell receptor (TCR) and RPP arrays to follow TCR signaling complex assembly in human ex vivo isolated CD4 T-cells. Using this strategy, we report specific recruitment of signaling components to the TCR complex upon T-cell activation in as few as 0.5 million of cells. Second- to fourth-order TCR interacting proteins were accurately quantified, making this strategy specially well-suited to the analysis of membrane-associated signaling complexes in limited amounts of cells or tissues, e.g., ex vivo isolated cells or clinical specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous work we found that mezerein, a C kinase activator, as well as basic fibroblast growth factor (FGF-2) induce demyelination and partial oligodendrocyte dedifferentiation in highly differentiated aggregating brain cell cultures. Here we show that following protein kinase C activator-induced demyelination, effective remyelination occurs. We found that mezerein or FGF-2 caused a transient increase in DNA synthesis following a pronounced decrease of the myelin markers myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphohydrolase. Both oligodendrocytes and astrocytes were involved in this mitogenic response. Within 17 days after demyelination, myelin was restored to the level of the untreated controls. Transient mitotic activity was indispensable for remyelination. The present results suggest that myelinating oligodendrocytes retain the capacity to reenter the cell cycle, and that this plasticity is important for the regeneration of the oligodendrocyte lineage and remyelination. Although it cannot be excluded that a quiescent population of oligodendrocyte precursor cells was present in the aggregates and able to proliferate, differentiate and remyelinate, we could not find evidence supporting this view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon were examined by a combined biochemical and double-labeling immunocytochemical study for the developmental expression of glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). It was found that these two astroglial markers are co-expressed at different developmental stages in vitro. During the phase of cellular maturation (i.e. between days 14 and 34), GFAP levels and GS activity increase rapidly and in parallel. At the same time, the number of immunoreactive cells increase while the long and thick processes staining in early cultures gradually disappear. The present results demonstrate that in this particular cell culture system only one type of astrocytes develops which expresses both GFAP and GS and which attains a relatively high degree of maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Plasmodium falciparum(P. falciparum) merozoite surfaceprotein 2 (MSP-2) is one of bloodstage proteins that are associated withprotection from malaria. MSP-2 consistsof a highly polymorphic centralrepeat region flanked by a dimorphicregion that defines the two allelicfamilies, 3D7 and FC27; N- and Cterminalregions are conserved domains.Long synthetic peptides (LSP)representing the two allelic familiesof MSP-2 and constant regions arerecognized by sera from donors livingin endemic areas; and specific antibodies(Abs) are associated with protectionand active in antibody dependentcellular inhibition (ADCI) in vitro.However, the fine specificity ofAb response to the two allelic familiesof MSP-2 is unknown. Methods: Peptidesrepresenting dimorphic regionof 3D7 and FC27 families and theirC-terminal (common fragment to thetwo families) termed 3D7-D (88 aa),FC27-D (48 aa) and C (40 aa) respectivelywere synthesized. Overlapping20 mer peptides covering dimorphicand constant regions of two familieswere also synthesized for epitopemapping. Human sera were obtainedfrom donors living in malaria endemicareas. SpecificDand CregionsAbs were purified from single or poolhuman sera. Sera from mice were obtainedafter immunization with thetwo families LSP mixture in three differentadjuvants: alhydrogel (Alum),Glucopyranosyl Lipid Adjuvant-Stableoil-in-water Emulsion (GLA-SE)and Virosome. For ADCI, P. falciparum(strain 3D7) parasite wasmaintained in culture at 0.5% parasitemiaand 4% hematocrit in air tightbox at love oxygen (2%) and 37 ºC.Results: We identified several epitopesfrom the dimorphic and constantregions of both families of MSP-2, inmice and humans (adults and children).In human, most recognizedepitopes were the same in differentendemic regions for each domain ofthe two families of MSP-2. In mice,the differential recognition of epitopewas depending on the strain of mouseand interestingly on the adjuvantused. GLA-SE and alum as adjuvantswere more often associated with therecognition of multiple epitopes thanvirosomes. Epitope-specific Abs recognizednative merozoites of P.falciparum and were active in ADCIto block development of parasite.Conclusion: The delineation of a limitednumber of epitopes could be exploitedto develop MSP-2 vaccinesactive on both allelic families ofMSP-2.