142 resultados para Paternal And Maternal Age
em Université de Lausanne, Switzerland
Resumo:
The species of the common shrew (Sorex araneus) group are morphologically very similar, but have undergone a spectacular chromosomal evolution. We investigate here the evolutionary history of the Sorex araneus group distributed in western Europe. In particular, we clarify the position of a difficult species, S. granarius, using sex-specific (mtDNA and Y-chromosome) markers. The karyotype of S. granarius is generally considered similar to the common ancestor of the restricted group considered here. The mtDNA data (1.4 kb) confirms the close relationship between S. granarius and S. araneus sensu stricto (hereafter S. araneus s.s.), but the Y-chromosome (3.4 kb) produces a quite different picture: S. granarius is closely related to another species, S. coronatus. Comparison of mtDNA and Y-chromosome phylogenies suggests that the genetic and chromosomal evolution in this group are disconnected processes. The evolutionary history of the south-western European populations of the S. araneus group can only be understood considering secondary contacts between taxa after their divergence, implying genetic exchanges by means of hybridization and/or introgression.
Resumo:
Juvenile or adult fish can alter their behaviour and rely on an innate and adaptive immune system to avoid/counteract pathogens, while fish embryos have to depend on egg characteristics and may be partly protected by their developing immune system that is building up from a certain age on. We developed an infection protocol that allows testing the reaction of individual whitefish embryos (Coregonus palaea) to repeated exposures to Pseudomonas fluorescens, an opportunistic bacterial fish pathogen. We used a full-factorial in vitro breeding design to separately test the effects of paternal and maternal contributions to the embryos' susceptibility to different kinds of pathogen exposure. We found that a first non-lethal exposure had immunosuppressive effects: pre-exposed embryos were more susceptible to future challenges with the same pathogen. At intermediate and high levels of pathogen intensity, maternal effects turned out to be crucial for the embryos' tolerance to infection. Paternal (i.e. genetic) effects played a significant role at the strongest level of infection, i.e. the embryos' own genetics already explained some of the variation in embryo susceptibility. Our findings suggest that whitefish embryos are largely protected by maternally transmitted substances, but build up some own innate immunocompetence several days before hatching.
Resumo:
Summary : Due to anthropogenic impacts and natural fluctuations, fish usually have to cope with constantly changing and often hostile environments. Whereas adult fish have various possibilities to counteract unfavourable environmental conditions, embryos have much fewer options. Besides by their developing immune system, they are protected by the egg envelopes and several immune substances provided by their mothers. In addition to this, they may also adjust their hatching timing in reaction to various risks. However, individuals may vary in their defensive potential. This variation may be either based on their genetics and/or on differential maternal investments and may be dependent on the experienced stress. Nevertheless, in fish, the impact of such parental contributions on embryo and/or juvenile viability is still poorly investigated. The main objective of this thesis was to investigate the importance of paternal (i.e. genetic) and maternal (i.e. genetic + egg investment) contributions to offspring viability under different environmental conditions and at different life stages. In order to investigate this, we used gametes of various salmonids for in vitro fertilisation experiments based on full-factorial breeding designs. The individual studies are summarised in the following chapters: In the first chapter, we tested the effectiveness of the embryonic immune system in Lake whitefish (Coregonus palaea). Namely, we investigated paternal and maternal contributions to the embryos' tolerance to different kinds of pathogen exposure. Additionally, we tested whether an early sub-léthal exposure has a positive or a negative effect on an embryo's susceptibility to later pathogen exposures with the same pathogen. We found that pre-challenged embryos were more susceptible to future challenges. Moreover, pathogen susceptibility was dependent on maternal investments and/or the embryos' own genetics, depending on the challenge level. Chapter 2 summarises a similar study with brown trout (Salmo trutta). In addition to the previously described investigations, we analysed if genetic effects on offspring viability are mediated either by parental MHC genotypes or relatedness based on neutral microsatellite markers, and we tested if males signal their genetic quality either by their body size or their melanin-based skin colouration. We found that embryo survival was lower at higher stress levels and dependent on the embryos' genetics. Addirionally, parents with similar and/or, very common MHC genotypes had higher offspring viabilities. Finally, darker males produced more viable offspring. In the first two chapters we investigated the embryos' defensive potential based on their immune system, i.e. their pathogen tolerance. In chapter 3 we investigate whether hatching timing of Lake whitefìsh (C. palaea) is dependent on parental contributions and/or on pathogen pressure, and whether there are parental-environmental interactions. We found that whitefish embryos hatch earlier under increasing pathogen pressure. Moreover, hatching timing was affected by embryo genetics and/or maternally provided resources, but the magnitude of the effect was dependent on the pathogen. pressure. We also found a significant paternal-environmental interaction, indicating that the hatching efficiency of a certain sib group is dependent on the pathogen environment. Chapter 4 describes an analogous study with brown trout (S. trutta), with similar findings. In the former chapters, we only looked at offspring performance during the embryonic period, and only under semi-natural conditions. In chapter 5 we now test the performance and viability of embryonic and juvenile brown trout (S. trutta) under natural conditions. To measure embryo viability, we put them in brood boxes, buried them in the gravel of a natural river, and analysed survival after several months. To investigate juvenile survival and performance, wé reared embryos under different stress levels in the laboratory and subsequently released the resulting hatchlings in to a closed river section. Juvenile size and survival was then determined one year later. Additionally, we investigated if sires differ in their genetic quality, determined by embryo and juvenile survival as well as juvenile size, and if they signal their quality by either body size or melanin-based body darkness. We found hat juvenile size was dependent on genetic effects and on maternal investment, whereas this was neither the case for embryo nor for juvenile survival. Additionally, we found that offspring of darker males grew larger, and larger juveniles had also an increased survival. Finally, we found acarry-over effect of the early non-lethal challenge: exposing embryos to higher stress levels resulted in smaller juveniles. To evaluate the long-term performance of differently treated groups, mark-recapture studies are inevitable. For this purpose, effective mass-marking techniques are essential. In chapter 6 we tested the suitability of the fluorescent pigment spray marking method for the mass marking of European graylings (Thymallus thymallus), with very promising results. Our in vitro fertilisation studies on whitefish may reveal new insights on potential genetic benefits of mate choice, but the mating system of whitefish under natural conditions is still poorly investigated. In order to study this, we installed underwater cameras at the spawning place of a Coregonus suidteri population, recorded the whole mating period and subsequently analysed the recordings. Confirmations of previous findings as well as exciting new observations are listed and discussed in chapter 7. Dus aux impacts anthropogéniques et aux fluctuations naturelles, les poissons doivent faire face à des environnements en perpétuel changement. Ces changements font que les poissons doivent s'adapter à de nouvelles situations, souvent hostiles pour eux. Les adultes ont différentes possibilités d'échapper à un environnement peu favorable, ce n'est par contre pas le cas des embryons. Les embryons sont protégés d'une part par leur système immunitaire en développement, d'autre part, par la coquille de l'eeuf et différentes substances immunitaires fournies par leur mère. De plus, ils sont capables d'influencer leur propre date d'éclosion en réponse à différents facteurs de stress. Malgré tout, les individus varient dans leur capacité à se défendre. Cette variation peut être basé sur des facteurs génétiques et/ou sur des facteurs maternels, et est dépendante du stress subi. Néanmoins, chez les poissons, l'impact de telles contributions parentales sur la survie d'embryons et/ou juvéniles est peu étudié. L'objectif principal de cette thèse a été d'approfondir les connaissances sur l'importance de la contribution paternelle (c.a.d. génétique) et maternelle (c.a.d. génétique + investissement dans l'oeuf) sur la survie des jeunes dans différentes conditions expérimentales et stades de vie. Pour faire ces analyses, nous avons utilisé des gamètes de divers salmonidés issus de croisements 'full-factorial'. Les différentes expériences sont résumées dans les chapitres suivants: Dans le premier chapitre, nous avons testé l'efficacité du système immunitaire des embryons chez les corégones (Coregonus palea). Plus précisément nous avons étudié la contribution paternelle et maternelle à la tolérance des embryons à différents niveaux de stress pathogène. Nous avons aussi testé, si une première exposition non létale à un pathogène avait un effet positif ou négatif sur la susceptibilité d'un embryon a une deuxième exposition au même pathogène. Nous avons trouvé que des embryons qui avaient été exposés une première fois étaient plus sensibles au pathogène par la suite. Mais aussi que la sensibilité au pathogène était dépendante de l'investissement de la mère et/ou des gènes de l'embryon, dépendamment du niveau de stress. Le deuxième chapitre résume une étude similaire avec des truites (Salmo truffa). Nous avons examiné, si la survie des jeunes variait sous différentes intensités de stress, et si la variance observée était due aux gènes des parents. Nous avons aussi analysé si les effets génétiques sur la survie des juvéniles étaient dus au MHC (Major Histocompatibility Complex) ou au degré de parenté des parents. De plus, nous avons analysé si les mâles signalaient leur qualité génétique par la taille du corps ou par leur coloration noire, due à la mélanine. On a trouvé que la survie des embryons était plus basse quand le niveau de stress était plus haut mais que la variation restait dépendante de la génétique des embryons. De plus, les parents avec des MHC similaires et/ou communs avaient des embryons avec une meilleure survie. Par contre, des parents avec un degré de parenté plus haut produisent des embryons avec une survie plus mauvaise. Finalement nous avons montré que les mâles plus foncés ont des embryons qui survivent mieux, mais que la taille des mâles n'a pas d'influence sur la survie de ces mêmes embryons. Dans les deux premiers chapitres, nous avons étudié le potentiel de défense des embryons basé sur leur système immunitaire, c.a.d. leur tolérance aux pathogènes. Dans le troisième chapitre, nous nous intéressons à la date d'éclosion des corégones (C. palea), pour voir si elle est influencée par les parents ou par la pression des pathogènes, et si il y a une interaction entre ces deux facteurs. Nous avons trouvé que les jeunes naissent plus rapidement lorsque la pression en pathogènes augmente. La date d'éclosion est influencée par la génétique des embryons et/ou l'investissement des parents, mais c'est la magnitude des effets qui est dépendante de la pression du pathogène. Nous avons aussi trouvé une interaction entre l'effet paternel et l'environnement, ce qui indique que la rapidité d'éclosion de certains croisements est dépendante des pathogènes dans l'environnement. Le chapitre 4 décrit une étude analogue avec de truites (S. truffa), avec des résultats sitzimilaires. Dans les précédents chapitres nous nous sommes uniquement concentrés sur les performances des jeunes durant leur stade embryonnaire, et seulement dans des conditions semi naturelles. Dans le chapitre 5 nous testons la performance et la viabilité des embryons et de juvéniles de truites (S. truffa) dans des conditions naturelles. Nous avons trouvé que la taille des juvéniles était dépendante d'effets génétiques et de l'investissement maternel, mais ceci n'était ni les cas pour les survie des embryons et des juvéniles. De plus, nous avons trouvé que les jeunes des mâles plus foncés devenaient plus grands et que les grands ont un meilleur taux de survie. Finalement nous avons trouvé un 'carry-over effect' d'une première exposition non létale à un pathogène: exposer des embryons à des plus hauts niveaux de stress donnait des juvéniles plus petits. Pour évaluer la performance à long terme de groupes traités dé manières différentes, une méthode de marquage-recapture est inévitable. Pour cette raison, des techniques de marquage en masse sont nécessaires. Dans le chapitre 6, nous avons testé l'efficacité de la technique `fluorescent pigment spray marking' pour le marquage en masse de l'Ombre commun (Thymallus thymallus), avec des résultats très prometteurs. Les études de fertilisations in vitro avec les corégones nous donnent une idée du potentiel bénéfice génétique que représente la sélection d'un bon partenaire, même si le système d'accouplement des corégones en milieu naturel reste peu connu. Pour combler cette lacune, nous avons installé des caméras sous-marines autour de la frayère d'une population de corégones (C. suidteri), nous avons enregistré toute la période de reproduction et nous avons analysé les données par la suite. Ainsi, nous avons été capables de confirmer bien des résultats trouvés précédemment, mais aussi de faire de nouvelles observations. Ces résultats sont reportés dans le septième chapitre, où elles sont comparées avec des observations antérieures.
Resumo:
This study examines trends and geographical differences in total and live birth prevalence of trisomies 21, 18 and 13 with regard to increasing maternal age and prenatal diagnosis in Europe. Twenty-one population-based EUROCAT registries covering 6.1 million births between 1990 and 2009 participated. Trisomy cases included live births, fetal deaths from 20 weeks gestational age and terminations of pregnancy for fetal anomaly. We present correction to 20 weeks gestational age (ie, correcting early terminations for the probability of fetal survival to 20 weeks) to allow for artefactual screening-related differences in total prevalence. Poisson regression was used. The proportion of births in the population to mothers aged 35+ years in the participating registries increased from 13% in 1990 to 19% in 2009. Total prevalence per 10 000 births was 22.0 (95% CI 21.7-22.4) for trisomy 21, 5.0 (95% CI 4.8-5.1) for trisomy 18 and 2.0 (95% CI 1.9-2.2) for trisomy 13; live birth prevalence was 11.2 (95% CI 10.9-11.5) for trisomy 21, 1.04 (95% CI 0.96-1.12) for trisomy 18 and 0.48 (95% CI 0.43-0.54) for trisomy 13. There was an increase in total and total corrected prevalence of all three trisomies over time, mainly explained by increasing maternal age. Live birth prevalence remained stable over time. For trisomy 21, there was a three-fold variation in live birth prevalence between countries. The rise in maternal age has led to an increase in the number of trisomy-affected pregnancies in Europe. Live birth prevalence has remained stable overall. Differences in prenatal screening and termination between countries lead to wide variation in live birth prevalence.
Resumo:
BACKGROUND: Insulin-like growth factor-I (IGF-I) and C-reactive protein (CRP) may be positively associated with the risk of epithelial ovarian cancer (EOC) but no previous studies have investigated their associations with non-epithelial ovarian cancers (NEOC). METHODS: A case-control study was nested within the Finnish Maternity Cohort. Case subjects were 58 women diagnosed with sex cord-stromal tumors (SCST) and 30 with germ cell tumors (GCT) after recruitment. Control subjects (144 for SCST and 74 for GCT) were matched for age, parity, and date of blood donation of the index case. RESULTS: Doubling of IGF-I concentration was not related to maternal risk of either SCST (OR 0.97, 95% CI 0.58-1.62) or GCT (OR 1.13, 95% CI 0.51-2.51). Similarly, doubling of CRP concentrations was not related to maternal risk of either SCST (OR 1.10, 95% CI 0.85-1.43) or GCT (OR 0.93, 95% CI 0.68-1.28). CONCLUSIONS: Pre-diagnostic IGF-I and CRP concentrations during the first trimester of pregnancy were not associated with increased risk of NEOC in the mother. Risk factors for NEOC may differ from those of EOC.
Resumo:
BACKGROUND: Elevated serum concentrations of insulin-like growth factor (IGF)-1 have been associated with increased risk of breast cancer. Previously, we reported a similar association in samples obtained during pregnancy. The current study was conducted to further characterize the association of IGF-1 during pregnancy with maternal breast cancer risk. METHODS: A case-control study was nested within the Finnish Maternity Cohort. The study was limited to primiparous women less than 40 years of age, who donated blood samples during early (median, 12 weeks) pregnancy and delivered a single child at term. Seven hundred and nineteen women with invasive breast cancer were eligible. Two controls (n = 1,434) were matched to each case on age and date at blood donation. Serum IGF-1 concentration was measured using an Immulite 2000 analyzer. Conditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI).RESULTS: No significant associations were observed between serum IGF-1 concentrations and breast cancer risk in both the overall analysis (OR 1.08 (95% CI 0.80-1.47) and in analyses stratified by histological subtype, lag-time to cancer diagnosis, age at pregnancy or age at diagnosis.CONCLUSIONS: There was no association between IGF-1 and maternal breast cancer risk during early pregnancy in this large nested case-control study.Impact:Serum IGF-1 concentrations during early pregnancy may not be related to maternal risk of breast cancer.
Resumo:
Full-term pregnancies are associated with long-term reductions in maternal risk of breast cancer, but the biological determinants of the protection are unknown. Experimental observations suggest that human chorionic gonadotropin (hCG), a major hormone of pregnancy, could play a role in this association. A case-control study (242 cases and 450 controls) nested within the Northern Sweden Maternity Cohort included women who had donated a blood sample during the first trimester of a first full-term pregnancy. Total hCG was determined on Immulite 2000 analyzer. Odds ratios (OR) and 95% confidence intervals (CI) were estimated through conditional logistic regression. Maternal breast cancer risk decreased with increasing hCG (upper tertile OR, 0.67; CI, 0.46-0.99), especially for pregnancies before age 25 (upper tertile OR, 0.41; CI, 0.21-0.80). The association diverged according to age at diagnosis: risk was reduced after age 40 (upper tertile OR, 0.60; CI, 0.39-0.91) and seemed to increase before age 40 (upper tertile OR, 1.78; CI, 0.72-4.38). Risk was reduced among those diagnosed 10 years or longer after blood draw (upper tertile OR, 0.60; CI, 0.40-0.90), but not so among those diagnosed within 10 years (upper tertile OR, 4.33; CI, 0.86-21.7). These observations suggest that the association between pregnancy hCG and subsequent maternal risk of breast cancer is modified by age at diagnosis. Although the hormone seems to be a determinant of the reduced risk around or after age 50, it might not confer protection against, or it could even increase the risk of, cancers diagnosed in the years immediately following pregnancy.
Resumo:
Preterm infants experience intense stress during the perinatal period because they endure painful and intense medical procedures. Repeated activation of the hypothalamic-pituitary-adrenal (HPA) axis during this period may have long-term effects on subsequent cortisol regulation. A premature delivery may also be intensely stressful for the parents, and they may develop symptoms of posttraumatic stress disorder (PTSD). Usable saliva samples were collected (4 times per day over 2 days, in the morning at awakening, at midday, in the afternoon, and in the evening before going to bed) to assess the diurnal cortisol regulation from 46 preterm infants when the infants were 12 months of corrected age (∼ 14 months after birth). Mothers reported their level of PTSD symptoms. The results showed an interaction between perinatal stress and maternal traumatic stress on the diurnal cortisol slope of preterm infants (R(2) = .32). This suggests that the HPA axis of preterm infants exposed to high perinatal stress may be more sensitive to subsequent environmental stress.
Resumo:
OBJECTIVES: To determine the excess risk of non-chromosomal congenital anomaly (NCA) among teenage mothers and older mothers. DESIGN AND SETTING: Population-based prevalence study using data from EUROCAT congenital anomaly registers in 23 regions of Europe in 15 countries, covering a total of 1.75 million births from 2000 to 2004. PARTICIPANTS: A total of 38,958 cases of NCA that were live births, fetal deaths with gestational age > or = 20 weeks or terminations of pregnancy following prenatal diagnosis of a congenital anomaly. MAIN OUTCOME MEASURES: Prevalence of NCA according to maternal age, and relative risk (RR) of NCA and 84 standard NCA subgroups compared with mothers aged 25-29. RESULTS: The crude prevalence of all NCA was 26.5 per 1000 births in teenage mothers (<20 years), 23.8 for mothers 20-24 years, 22.5 for mothers 25-29 years, 21.5 for mothers 30-34 years, 21.4 for mothers 35-39 years and 22.6 for mothers 40-44 years. The RR adjusted for country for teenage mothers was 1.11 (95% CI 1.06-1.17); 0.99 (95% CI 0.96-1.02) for mothers 35-39; and 1.01 (95% CI 0.95-1.07) for mothers 40-44. The pattern of maternal age-related risk varied significantly between countries: France, Ireland and Portugal had higher RR for teenage mothers, Germany and Poland had higher RR for older mothers. The maternal age-specific RR varied for different NCAs. Teenage mothers were at a significantly greater risk (P < 0.01) of gastroschisis, maternal infection syndromes, tricuspid atresia, anencephalus, nervous system and digestive system anomalies while older mothers were at a significantly greater risk (P < 0.01) of fetal alcohol syndrome, encephalocele, oesophageal atresia and thanatophoric dwarfism. CONCLUSIONS: Clinical and public health interventions are needed to reduce environmental risk factors for NCA, giving special attention to young mothers among whom some risk factors are more prevalent. Reassurance can be given to older mothers that their age in itself does not confer extra risk for NCA.
Resumo:
BACKGROUND: Sex steroid hormones have been proposed to play a role in the development of non-epithelial ovarian cancers (NEOC) but so far no direct epidemiological data are available.METHODS: A case-control study was nested within the Finnish Maternity Cohort, the world's largest bio-repository of serum specimens from pregnant women. Study subjects were selected among women who donated a blood sample during a singleton pregnancy that led to the birth of their last child preceding diagnosis of NEOC. Case subjects were 41 women with sex-cord stromal tumors (SCST) and 21 with germ cell tumors (GCT). Three controls, matching the index case for age, parity at the index pregnancy, and date at blood donation were selected (n=171). Odds ratios (OR) and 95% confidence intervals (CI) associated with concentrations of testosterone, androstenedione, 17-OH-progesterone, progesterone, estradiol and sex hormone binding globulin (SHBG) were estimated through conditional logistic regression.RESULTS: For SCST, doubling of testosterone, androstenedione and 17-OH-progesterone concentrations were associated with about 2-fold higher risk of SCST [ORs and 95% CI of 2.16 (1.25-3.74), 2.16 (1.20-3.87), and 2.62 (1.27-5.38), respectively]. These associations remained largely unchanged after excluding women within 2, 4 or 6 years lag-time between blood donation and cancer diagnosis. Sex steroid hormones concentrations were not related to maternal risk of GCT.CONCLUSIONS: This is the first prospective study providing initial evidence that elevated androgens play a role in the pathogenesis of SCST. Impact: Our study may note a particular need for larger confirmatory investigations on sex steroids and NEOC.
Resumo:
Based on ecological and metabolic arguments, some authors predict that adaptation to novel, harsh environments should involve alleles showing negative (diminishing return) epistasis and/or that it should be mediated in part by evolution of maternal effects. Although the first prediction has been supported in microbes, there has been little experimental support for either prediction in multicellular eukaryotes. Here we use a line-cross design to study the genetic architecture of adaptation to chronic larval malnutrition in a population of Drosophila melanogaster that evolved on an extremely nutrient-poor larval food for 84 generations. We assayed three fitness-related traits (developmental rate, adult female weight and egg-to-adult viability) under the malnutrition conditions in 14 crosses between this selected population and a nonadapted control population originally derived from the same base population. All traits showed a pattern of negative epistasis between alleles improving performance under malnutrition. Furthermore, evolutionary changes in maternal traits accounted for half of the 68% increase in viability and for the whole of 8% reduction in adult female body weight in the selected population (relative to unselected controls). These results thus support both of the above predictions and point to the importance of nonadditive effects in adaptive microevolution.
Resumo:
Both late menarcheal age and low calcium intake (Ca intake) during growth are risk factors for osteoporosis, probably by impairing peak bone mass. We investigated whether lasting gain in areal bone mineral density (aBMD) in response to increased Ca intake varies according to menarcheal age and, conversely, whether Ca intake could influence menarcheal age. In an initial study, 144 prepubertal girls were randomized in a double-blind controlled trial to receive either a Ca supplement (Ca-suppl.) of 850 mg/d or placebo from age 7.9-8.9 yr. Mean aBMD gain determined by dual energy x-ray absorptiometry at six sites (radius metaphysis, radius diaphysis, femoral neck, trochanter, femoral diaphysis, and L2-L4) was significantly (P = 0.004) greater in the Ca-suppl. than in the placebo group (27 vs. 21 mg/cm(2)). In 122 girls followed up, menarcheal age was recorded, and aBMD was determined at 16.4 yr of age. Menarcheal age was lower in the Ca-suppl. than in the placebo group (P = 0.048). Menarcheal age and Ca intake were negatively correlated (r = -0.35; P < 0.001), as were aBMD gains from age 7.9-16.4 yr and menarcheal age at all skeletal sites (range: r = -0.41 to r = -0.22; P < 0.001 to P = 0.016). The positive effect of Ca-suppl. on the mean aBMD gain from baseline remained significantly greater in girls below, but not in those above, the median of menarcheal age (13.0 yr). Early menarcheal age (12.1 +/- 0.5 yr): placebo, 286 +/- 36 mg/cm(2); Ca-suppl., 317 +/- 46 (P = 0.009); late menarcheal age (13.9 +/- 0.5 yr): placebo, 284 +/- 58; Ca-suppl., 276 +/- 50 (P > 0.05). The level of Ca intake during prepuberty may influence the timing of menarche, which, in turn, could influence long-term bone mass gain in response to Ca supplementation. Thus, both determinants of early menarcheal age and high Ca intake may positively interact on bone mineral mass accrual.
Resumo:
Intensification of farming over the past 50 years has homogenised the landscape structure and contributed to the decline of bird populations in Europe. To better target the conservation of the Barn Owl Tyto alba, we assessed the influence of the landscape structure on breeding performance in western Switzerland. The analyses considered a 23-year data set of breeding parameters collected in an area dominated by intensive agriculture. Using a Geographic Information System approach, landscape characteristics were described around 194 nest sites. Our analyses showed that nest-box occupancy, laying date, clutch and brood size, egg volume and probability of producing a second annual clutch were not significantly associated with any of the eight principal landscape variables (agricultural land, woodland, urban area, hedgerows, cereals, sugar beet, maize and meadow). Nevertheless, the probability that a breeding pair occupied a nest-box decreased the more roads there were surrounding the nest-box. The absence of strong associations between habitat features and breeding parameters suggests that prey availability may be relatively similar between the different breeding sites. In our study area Barn Owls can always find suitable foraging habitats around most nest-boxes.