8 resultados para Parkinson’s disease - motor deficits
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVE: To investigate the safety and efficacy of 50-Hz repetitive transcranial magnetic stimulation (rTMS) in the treatment of motor symptoms in Parkinson disease (PD). BACKGROUND: Progression of PD is characterized by the emergence of motor deficits that gradually respond less to dopaminergic therapy. rTMS has shown promising results in improving gait, a major cause of disability, and may provide a therapeutic alternative. Prior controlled studies suggest that an increase in stimulation frequency might enhance therapeutic efficacy. METHODS: In this randomized, double blind, sham-controlled study, the authors investigated the safety and efficacy of 50-Hz rTMS of the motor cortices in 8 sessions over 2 weeks. Assessment of safety and clinical efficacy over a 1-month period included timed tests of gait and bradykinesia, Unified Parkinson's Disease Rating Scale (UPDRS), and additional clinical, neurophysiological, and neuropsychological parameters. In addition, the safety of 50-Hz rTMS was tested with electromyography-electroencephalogram (EMG-EEG) monitoring during and after stimulation. RESULTS: The authors investigated 26 patients with mild to moderate PD: 13 received 50-Hz rTMS and 13 sham stimulation. The 50-Hz rTMS did not improve gait, bradykinesia, and global and motor UPDRS, but there appeared a short-lived "on"-state improvement in activities of daily living (UPDRS II). The 50-Hz rTMS lengthened the cortical silent period, but other neurophysiological and neuropsychological measures remained unchanged. EMG/EEG recorded no pathological increase of cortical excitability or epileptic activity. There were no adverse effects. CONCLUSION: It appears that 50-Hz rTMS of the motor cortices is safe, but it fails to improve motor performance and functional status in PD. Prolonged stimulation or other techniques with rTMS might be more efficacious but need to be established in future research.
Resumo:
Previous studies have demonstrated that non-demented Parkinson's disease (PD) patients have a specific impairment of verb production compared with noun generation. One interpretation of this deficit suggested the influence of striato-frontal dysfunction on action-related verb processing. The aim of our study was to investigate cerebral changes after motor improvement due to dopaminergic medication on the neural circuitry supporting action representation in the brain as mediated by verb generation and motor imagery in PD patients. Functional magnetic resonance imaging on 8 PD patients in "ON" dopaminergic treatment state (DTS) and in "OFF" DTS was used to explore the brain activity during three different tasks: Object Naming (ObjN), Generation of Action Verbs (GenA) in which patients were asked to overtly say an action associated with a picture and mental simulation of action (MSoA) was investigated by asking subjects to mentally simulate an action related to a depicted object. The distribution of brain activities associated with these tasks whatever DTS was very similar to results of previous studies. The results showed that brain activity related to semantics of action is modified by dopaminergic treatment in PD patients. This cerebral reorganisation concerns mainly motor and premotor cortex suggesting an involvement of the putaminal motor loop according to the "motor" theory of verb processing.
Resumo:
Adiposity, low aerobic fitness and low levels of activity are all associated with clustered cardiovascular disease risk in children and their high prevalence represents a major public health concern. The aim of this study is to investigate the relationship of objectively measured physical activity (PA) with motor skills (agility and balance), aerobic fitness and %body fat in young children. This study is a cross-sectional and longitudinal analyses using mixed linear models. Longitudinal data were adjusted for baseline outcome parameters. In all, 217 healthy preschool children (age 4-6 years, 48% boys) participated in this study. PA (accelerometers), agility (obstacle course), dynamic balance (balance beam), aerobic fitness (20-m shuttle run) and %body fat (bioelectric impedance) at baseline and 9 months later. PA was positively associated with both motor skills and aerobic fitness at baseline as well as with their longitudinal changes. Specifically, only vigorous, but not total or moderate PA, was related to changes in aerobic fitness. Higher PA was associated with less %body fat at baseline, but not with its change. Conversely, baseline motor skills, aerobic fitness or %body fat were not related to changes in PA. In young children, baseline PA was associated with improvements in motor skills and in aerobic fitness, an important determinant of cardiovascular risk.
Resumo:
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Resumo:
In the context of an autologous cell transplantation study, a unilateral biopsy of cortical tissue was surgically performed from the right dorsolateral prefrontal cortex (dlPFC) in two intact adult macaque monkeys (dlPFC lesioned group), together with the implantation of a chronic chamber providing access to the left motor cortex. Three other monkeys were subjected to the same chronic chamber implantation, but without dlPFC biopsy (control group). All monkeys were initially trained to perform sequential manual dexterity tasks, requiring precision grip. The motor performance and the prehension's sequence (temporal order to grasp pellets from different spatial locations) were analysed for each hand. Following the surgery, transient and moderate deficits of manual dexterity per se occurred in both groups, indicating that they were not due to the dlPFC lesion (most likely related to the recording chamber implantation and/or general anaesthesia/medication). In contrast, changes of motor habit were observed for the sequential order of grasping in the two monkeys with dlPFC lesion only. The changes were more prominent in the monkey subjected to the largest lesion, supporting the notion of a specific effect of the dlPFC lesion on the motor habit of the monkeys. These observations are reminiscent of previous studies using conditional tasks with delay that have proposed a specialization of the dlPFC for visuo-spatial working memory, except that this is in a different context of "free-will", non-conditional manual dexterity task, without a component of working memory.
Resumo:
den Dunnen et al. [den Dunnen, W.F.A., Brouwer, W.H., Bijlard, E., Kamphuis, J., van Linschoten, K., Eggens-Meijer, E., Holstege, G., 2008. No disease in the brain of a 115-year-old woman. Neurobiol. Aging] had the opportunity to follow up the cognitive functioning of one of the world's oldest woman during the last 3 years of her life. They performed two neuropsychological evaluations at age 112 and 115 that revealed a striking preservation of immediate recall abilities and orientation. In contrast, working memory, retrieval from semantic memory and mental arithmetic performances declined after age 112. Overall, only a one-point decrease of MMSE score occurred (from 27 to 26) reflecting the remarkable preservation of cognitive abilities. The neuropathological assessment showed few neurofibrillary tangles (NFT) in the hippocampal formation compatible with Braak staging II, absence of amyloid deposits and other types of neurodegenerative lesions as well as preservation of neuron numbers in locus coeruleus. This finding was related to a striking paucity of Alzheimer disease (AD)-related lesions in the hippocampal formation. The present report parallels the early descriptions of rare "supernormal" centenarians supporting the dissociation between brain aging and AD processes. In conjunction with recent stereological analyses in cases aged from 90 to 102 years, it also points to the marked resistance of the hippocampal formation to the degenerative process in this age group and possible dissociation between the occurrence of slight cognitive deficits and development of AD-related pathologic changes in neocortical areas. This work is discussed in the context of current efforts to identify the biological and genetic parameters of human longevity.
Resumo:
BACKGROUND: Cranial nerve schwannomas are radiologically characterized by nodular cranial nerve enhancement on magnetic resonance imaging (MRI). Schwannomas typically present with gradually progressive symptoms, but isolated reports have suggested that schwannomas may cause fluctuating symptoms as well. METHODS: This is a report of ten cases of presumed cranial nerve schwannoma that presented with transient or recurring ocular motor nerve deficits. RESULTS: Schwannomas of the third, fourth, and fifth nerves resulted in fluctuating deficits of all 3 ocular motor nerves. Persistent nodular cranial nerve enhancement was present on sequential MRI studies. Several episodes of transient oculomotor (III) deficts were associated with headaches, mimicking ophthalmoplegic migraine. CONCLUSIONS: Cranial nerve schwannomas may result in relapsing and remitting cranial nerve symptoms.
Resumo:
The Fragile X mental retardation protein (FMRP) regulates neuronal RNA metabolism, and its absence or mutations leads to the Fragile X syndrome (FXS). The β-amyloid precursor protein (APP) is involved in Alzheimer's disease, plays a role in synapse formation, and is upregulated in intellectual disabilities. Here, we show that during mouse synaptogenesis and in human FXS fibroblasts, a dual dysregulation of APP and the α-secretase ADAM10 leads to the production of an excess of soluble APPα (sAPPα). In FXS, sAPPα signals through the metabotropic receptor that, activating the MAP kinase pathway, leads to synaptic and behavioral deficits. Modulation of ADAM10 activity in FXS reduces sAPPα levels, restoring translational control, synaptic morphology, and behavioral plasticity. Thus, proper control of ADAM10-mediated APP processing during a specific developmental postnatal stage is crucial for healthy spine formation and function(s). Downregulation of ADAM10 activity at synapses may be an effective strategy for ameliorating FXS phenotypes.