20 resultados para Parental Occupational-exposure
em Université de Lausanne, Switzerland
Resumo:
The exposure to dust and polynuclear aromatic hydrocarbons (PAH) of 15 truck drivers from Geneva, Switzerland, was measured. The drivers were divided between "long-distance" drivers and "local" drivers and between smokers and nonsmokers and were compared with a control group of 6 office workers who were also divided into smokers and nonsmokers. Dust was measured on 1 workday both by a direct-reading instrument and by sampling. The local drivers showed higher exposure to dust (0.3 mg/m3) and PAH than the long-distance drivers (0.1 mg/m3), who showed no difference with the control group. This observation may be due to the fact that the local drivers spend more time in more polluted areas, such as streets with heavy traffic and construction sites, than do the long-distance drivers. Smoking does not influence exposure to dust and PAH of professional truck drivers, as measured in this study, probably because the ventilation rate of the truck cabins is relatively high even during cold days (11-15 r/h). The distribution of dust concentrations was shown in some cases to be quite different from the expected log-normal distribution. The contribution of diesel exhaust to these exposures could not be estimated since no specific tracer was used. However, the relatively low level of dust exposure dose not support the hypothesis that present day levels of diesel exhaust particulates play a significant role in the excess occurrence of lung cancer observed in professional truck drivers.
Resumo:
Although polychlorinated biphenyls (PCBs) have been banned in many countries for more than three decades, exposures to PCBs continue to be of concern due to their long half-lives and carcinogenic effects. In National Institute for Occupational Safety and Health studies, we are using semiquantitative plant-specific job exposure matrices (JEMs) to estimate historical PCB exposures for workers (n = 24,865) exposed to PCBs from 1938 to 1978 at three capacitor manufacturing plants. A subcohort of these workers (n = 410) employed in two of these plants had serum PCB concentrations measured at up to four times between 1976 and 1989. Our objectives were to evaluate the strength of association between an individual worker's measured serum PCB levels and the same worker's cumulative exposure estimated through 1977 with the (1) JEM and (2) duration of employment, and to calculate the explained variance the JEM provides for serum PCB levels using (3) simple linear regression. Consistent strong and statistically significant associations were observed between the cumulative exposures estimated with the JEM and serum PCB concentrations for all years. The strength of association between duration of employment and serum PCBs was good for highly chlorinated (Aroclor 1254/HPCB) but not less chlorinated (Aroclor 1242/LPCB) PCBs. In the simple regression models, cumulative occupational exposure estimated using the JEMs explained 14-24% of the variance of the Aroclor 1242/LPCB and 22-39% for Aroclor 1254/HPCB serum concentrations. We regard the cumulative exposure estimated with the JEM as a better estimate of PCB body burdens than serum concentrations quantified as Aroclor 1242/LPCB and Aroclor 1254/HPCB.
Resumo:
Characterize ethylbenzene and xylene air concentrations, and explore the biological exposure markers (urinary t,t-muconic acid (t,t-MA) and unmetabolized toluene) among petroleum workers offshore. Offshore workers have increased health risks due to simultaneous exposures to several hydrocarbons present in crude oil. We discuss the pooled benzene exposure results from our previous and current studies and possible co-exposure interactions. BTEX air concentrations were measured during three consecutive 12-h work shifts among 10 tank workers, 15 process operators, and 18 controls. Biological samples were collected pre-shift on the first day of study and post-shift on the third day of the study. The geometric mean exposure over the three work shifts were 0.02 ppm benzene, 0.05 ppm toluene, 0.03 ppm ethylbenzene, and 0.06 ppm xylene. Benzene in air was significantly correlated with unmetabolized benzene in blood (r = 0.69, p < 0.001) and urine (r = 0.64, p < 0.001), but not with urinary t,t-MA (r = 0.27, p = 0.20). Toluene in air was highly correlated with the internal dose of toluene in both blood (r = 0.70, p < 0.001) and urine (r = 0.73, p < 0.001). Co-exposures were present; however, an interaction of metabolism was not likely at these low benzene and toluene exposures. Urinary benzene, but not t,t-MA, was a reliable biomarker for benzene at low exposure levels. Urinary toluene was a useful biomarker for toluene exposure. Xylene and ethylbenzene air levels were low. Dermal exposure assessment needs to be performed in future studies among these workers.
Resumo:
Polychlorinated biphenyls (PCBs) are carcinogenic. Estimating PCB half-life in the body based on levels in sera from exposed workers is complicated by the fact that occupational exposure to PCBs was to commercial PCB products (such as Aroclors 1242 and 1254) comprised of varying mixtures of PCB congeners. Half-lives were estimated using sera donated by 191 capacitor manufacturing plant workers in 1976 during PCB use (1946-1977), and post-exposure (1979, 1983, and 1988). Our aims were to: (1) determine the role of covariates such as gender on the half-life estimates, and (2) compare our results with other published half-life estimates based on exposed workers. All serum PCB levels were adjusted for PCB background levels. A linear spline model with a single knot was used to estimate two separate linear equations for the first two serum draws (Equation A) and the latter two (Equation B). Equation A gave half-life estimates of 1.74 years and 6.01 years for Aroclor 1242 and Aroclor 1254, respectively. Estimates were 21.83 years for Aroclor 1242 and 133.33 years for Aroclor 1254 using Equation B. High initial body burden was associated with rapid PCB elimination in workers at or shortly after the time they were occupationally exposed and slowed down considerably when the dose reached background PCB levels. These concentration-dependent half-life estimates had a transition point of 138.57 and 34.78 ppb for Aroclor 1242 and 1254, respectively. This result will help in understanding the toxicological and epidemiological impact of exposure to PCBs in humans.
Resumo:
Measurements and simulations were performed to assess workers' exposure to solvent vapors and aerosols during the waterproofing of a tiled surface. This investigation followed two recent incidents in the same company where workers experienced acute respiratory illness after spraying a stain-repellent resin containing fluorinated polymers on stone-tiled walls and floors. Because the waterproofing activity had been done for years at the tile company without encountering any exposure problems prior to these cases, it was strongly suspected that the incidents were linked to a recent change in the composition of the coating mixture. Experimental measurements and simulations indicated that the emission rate of particles smaller than 10 microm may be estimated at 0.66 mg/sec (SD 0.10) for the old resin and at 0.37 mg/sec (SD 0.04) for the new one. The measurement of the solvent emission rate from surfaces coated with the two resins indicated that shortly after spraying, the emission was in the range of 18 to 20 mg/sec x m2 and was similar for both products. Solvent and overspray emission rates were introduced in a two-zone compartment model. The results obtained in the near-field indicate significant exposure to overspray mist (7 and 34 mg/m3 for new resin) and solvent vapors (80 to 350 ppm for the new resin). It was also shown that the introduction of the new resin tended to significantly decrease the levels of solvents and particulates in the workers' breathing zone. These results strongly suggest that cases of acute respiratory illness are related to the specific toxicity of the fluorinated polymer itself. The fact that the same polymer is used in various commercial products raises concern regarding other possible occupational and domestic exposures.
Resumo:
BACKGROUND: Highway maintenance workers are constantly and simultaneously exposed to traffic-related particle and noise emissions, and both have been linked to increased cardiovascular morbidity and mortality in population-based epidemiology studies. OBJECTIVES: We aimed to investigate short-term health effects related to particle and noise exposure. METHODS: We monitored 18 maintenance workers, during as many as five 24-hour periods from a total of 50 observation days. We measured their exposure to fine particulate matter (PM2.5), ultrafine particles, noise, and the cardiopulmonary health endpoints: blood pressure, pro-inflammatory and pro-thrombotic markers in the blood, lung function and fractional exhaled nitric oxide (FeNO) measured approximately 15 hours post-work. Heart rate variability was assessed during a sleep period approximately 10 hours post-work. RESULTS: PM2.5 exposure was significantly associated with C-reactive protein and serum amyloid A, and negatively associated with tumor necrosis factor α. None of the particle metrics were significantly associated with von Willebrand factor or tissue factor expression. PM2.5 and work noise were associated with markers of increased heart rate variability, and with increased HF and LF power. Systolic and diastolic blood pressure on the following morning were significantly associated with noise exposure after work, and non-significantly associated with PM2.5. We observed no significant associations between any of the exposures and lung function or FeNO. CONCLUSIONS: Our findings suggest that exposure to particles and noise during highway maintenance work might pose a cardiovascular health risk. Actions to reduce these exposures could lead to better health for this population of workers.
Resumo:
An assessment of sewage workers' exposure to airborne cultivable bacteria, fungi and inhaled endotoxins was performed at 11 sewage treatment plants. We sampled the enclosed and unenclosed treatment areas in each plant and evaluated the influence of seasons (summer and winter) on bioaerosol levels. We also measured personal exposure to endotoxins of workers during special operation where a higher risk of bioaerosol inhalation was assumed. Results show that only fungi are present in significantly higher concentrations in summer than in winter (2331 +/- 858 versus 329 +/- 95 CFU m(-3)). We also found that there are significantly more bacteria in the enclosed area, near the particle grids for incoming water, than in the unenclosed area near the aeration basins (9455 +/- 2661 versus 2435 +/- 985 CFU m(-3) in summer and 11 081 +/- 2299 versus 2002 +/- 839 CFU m(-3) in winter). All bioaerosols were frequently above the recommended values of occupational exposure. Workers carrying out special tasks such as cleaning tanks were exposed to very high levels of endotoxins (up to 500 EU m(-3)) compared to routine work. The species composition and concentration of airborne Gram-negative bacteria were also studied. A broad spectrum of different species within the Pseudomonadaceae and the Enterobacteriaceae families were predominant in nearly all plants investigated. [Authors]
Resumo:
Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24-7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5-119.8 ng m(-3) during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure.
Resumo:
A growing number of studies have identified cleaners as a group at risk for adverse health effects of the skin and the respiratory tract. Chemical substances present in cleaning products could be responsible for these effects. Currently, only limited information is available about irritant and health hazardous chemical substances found in cleaning products. We hypothesized that chemical substances present in cleaning products are known health hazardous substances that might be involved in adverse health effects of the skin and the respiratory tract. We performed a systematic review of cleaning products used in the Swiss cleaning sector. We surveyed Swiss professional cleaning companies (n = 1476) to identify the most used products (n = 105) for inclusion. Safety data sheets (SDSs) were reviewed and hazardous substances present in cleaning products were tabulated with current European and global harmonized system hazard labels. Professional cleaning products are mixtures of substances (arithmetic mean 3.5 +/- 2.8), and more than 132 different chemical substances were identified in 105 products. The main groups of chemicals were fragrances, glycol ethers, surfactants, solvents; and to a lesser extent, phosphates, salts, detergents, pH-stabilizers, acids, and bases. Up to 75% of products contained irritant (Xi), 64% harmful (Xn) and 28% corrosive (C) labeled substances. Hazards for eyes (59%) and skin (50%), and hazards by ingestion (60%) were the most reported. Cleaning products potentially give rise to simultaneous exposures to different chemical substances. As professional cleaners represent a large workforce, and cleaning products are widely used, it is a major public health issue to better understand these exposures. The list of substances provided in this study contains important information for future occupational exposure assessment studies.