46 resultados para Parallel computing. Multilayer perceptron. OpenMP

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Geographic Information Systems has revolutionalized the handling and the visualization of geo-referenced data and has underlined the critic role of spatial analysis. The usual tools for such a purpose are geostatistics which are widely used in Earth science. Geostatistics are based upon several hypothesis which are not always verified in practice. On the other hand, Artificial Neural Network (ANN) a priori can be used without special assumptions and are known to be flexible. This paper proposes to discuss the application of ANN in the case of the interpolation of a geo-referenced variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted to developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas less has been done to predict the activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES2. The study involved first a homology modeling of the hCES2 protein based on the model of hCES1 since the two proteins share a high degree of homology (congruent with 73%). A set of 40 known substrates of hCES2 was taken from the literature; the ligands were docked in both their neutral and ionized forms using GriDock, a parallel tool based on the AutoDock4.0 engine which can perform efficient and easy virtual screening analyses of large molecular databases exploiting multi-core architectures. Useful statistical models (e.g., r (2) = 0.91 for substrates in their unprotonated state) were calculated by correlating experimental pK(m) values with distance between the carbon atom of the substrate's ester group and the hydroxy function of Ser228. Additional parameters in the equations accounted for hydrophobic and electrostatic interactions between substrates and contributing residues. The negatively charged residues in the hCES2 cavity explained the preference of the enzyme for neutral substrates and, more generally, suggested that ligands which interact too strongly by ionic bonds (e.g., ACE inhibitors) cannot be good CES2 substrates because they are trapped in the cavity in unproductive modes and behave as inhibitors. The effects of protonation on substrate recognition and the contrasting behavior of substrates and products were finally investigated by MD simulations of some CES2 complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research deals with an application of artificial neural networks for multitask learning from spatial environmental data. The real case study (sediments contamination of Geneva Lake) consists of 8 pollutants. There are different relationships between these variables, from linear correlations to strong nonlinear dependencies. The main idea is to construct a subsets of pollutants which can be efficiently modeled together within the multitask framework. The proposed two-step approach is based on: 1) the criterion of nonlinear predictability of each variable ?k? by analyzing all possible models composed from the rest of the variables by using a General Regression Neural Network (GRNN) as a model; 2) a multitask learning of the best model using multilayer perceptron and spatial predictions. The results of the study are analyzed using both machine learning and geostatistical tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study deals with the analysis and mapping of Swiss franc interest rates. Interest rates depend on time and maturity, defining term structure of the interest rate curves (IRC). In the present study IRC are considered in a two-dimensional feature space - time and maturity. Exploratory data analysis includes a variety of tools widely used in econophysics and geostatistics. Geostatistical models and machine learning algorithms (multilayer perceptron and Support Vector Machines) were applied to produce interest rate maps. IR maps can be used for the visualisation and pattern perception purposes, to develop and to explore economical hypotheses, to produce dynamic asset-liability simulations and for financial risk assessments. The feasibility of an application of interest rates mapping approach for the IRC forecasting is considered as well. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study looks at how increased memory utilisation affects throughput and energy consumption in scientific computing, especially in high-energy physics. Our aim is to minimise energy consumed by a set of jobs without increasing the processing time. The earlier tests indicated that, especially in data analysis, throughput can increase over 100% and energy consumption decrease 50% by processing multiple jobs in parallel per CPU core. Since jobs are heterogeneous, it is not possible to find an optimum value for the number of parallel jobs. A better solution is based on memory utilisation, but finding an optimum memory threshold is not straightforward. Therefore, a fuzzy logic-based algorithm was developed that can dynamically adapt the memory threshold based on the overall load. In this way, it is possible to keep memory consumption stable with different workloads while achieving significantly higher throughput and energy-efficiency than using a traditional fixed number of jobs or fixed memory threshold approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivation: Genome-wide association studies have become widely used tools to study effects of genetic variants on complex diseases. While it is of great interest to extend existing analysis methods by considering interaction effects between pairs of loci, the large number of possible tests presents a significant computational challenge. The number of computations is further multiplied in the study of gene expression quantitative trait mapping, in which tests are performed for thousands of gene phenotypes simultaneously. Results: We present FastEpistasis, an efficient parallel solution extending the PLINK epistasis module, designed to test for epistasis effects when analyzing continuous phenotypes. Our results show that the algorithm scales with the number of processors and offers a reduction in computation time when several phenotypes are analyzed simultaneously. FastEpistasis is capable of testing the association of a continuous trait with all single nucleotide polymorphism ( SNP) pairs from 500 000 SNPs, totaling 125 billion tests, in a population of 5000 individuals in 29, 4 or 0.5 days using 8, 64 or 512 processors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used massively parallel signature sequencing (MPSS) to sample the transcriptomes of 32 normal human tissues to an unprecedented depth, thus documenting the patterns of expression of almost 20,000 genes with high sensitivity and specificity. The data confirm the widely held belief that differences in gene expression between cell and tissue types are largely determined by transcripts derived from a limited number of tissue-specific genes, rather than by combinations of more promiscuously expressed genes. Expression of a little more than half of all known human genes seems to account for both the common requirements and the specific functions of the tissues sampled. A classification of tissues based on patterns of gene expression largely reproduces classifications based on anatomical and biochemical properties. The unbiased sampling of the human transcriptome achieved by MPSS supports the idea that most human genes have been mapped, if not functionally characterized. This data set should prove useful for the identification of tissue-specific genes, for the study of global changes induced by pathological conditions, and for the definition of a minimal set of genes necessary for basic cell maintenance. The data are available on the Web at http://mpss.licr.org and http://sgb.lynxgen.com.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud computing has recently become very popular, and several bioinformatics applications exist already in that domain. The aim of this article is to analyse a current cloud system with respect to usability, benchmark its performance and compare its user friendliness with a conventional cluster job submission system. Given the current hype on the theme, user expectations are rather high, but current results show that neither the price/performance ratio nor the usage model is very satisfactory for large-scale embarrassingly parallel applications. However, for small to medium scale applications that require CPU time at certain peak times the cloud is a suitable alternative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Gemcitabine, oxaliplatin and 5-fluorouracil (5-FU) are active in biliary tract cancer and have a potentially synergistic mode of action and non-overlapping toxicity. The objective of these trials was to determine response, survival and toxicity separately in patients with bile duct cancer (BDC) and gallbladder cancer (GBC) treated with gemcitabine/oxaliplatin/5-FU chemotherapy. METHODS: Eligible patients with histologically proven, advanced or metastatic BDC (n=37) or GBC (n=35) were treated with gemcitabine (900 mg m(-2) over 30 min), oxaliplatin (65 mg m(-2)) and 5-FU (1500 mg m(-2) over 24 h) on days 1 and 8 of a 21-day cycle. Tumour response was the primary outcome measure. RESULTS: Response rates were 19% (95% CI: 6-32%) and 23% (95% CI: 9-37%) for BDC and GBC, respectively. Median survivals were 10.0 months (95% CI: 8.6-12.4) and 9.9 months (95% CI: 7.5-12.2) for BDC and GBC, respectively, and 1- and 2-year survival rates were 40 and 23% in BDC and 34 and 6% in GBC (intention-to-treat analysis). Major grade III and IV adverse events were neutropenia, thrombocytopenia, elevated bilirubin and anorexia. CONCLUSION: Triple-drug chemotherapy achieves comparable results for response and survival to previously reported regimens, but with more toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the parallel map theory, the hippocampus encodes space with 2 mapping systems. The bearing map is constructed primarily in the dentate gyrus from directional cues such as stimulus gradients. The sketch map is constructed within the hippocampus proper from positional cues. The integrated map emerges when data from the bearing and sketch maps are combined. Because the component maps work in parallel, the impairment of one can reveal residual learning by the other. Such parallel function may explain paradoxes of spatial learning, such as learning after partial hippocampal lesions, taxonomic and sex differences in spatial learning, and the function of hippocampal neurogenesis. By integrating evidence from physiology to phylogeny, the parallel map theory offers a unified explanation for hippocampal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the spatial and temporal variation of species diversity and genetic diversity in a metacommunity comprising 16 species of freshwater gastropods. We monitored species abundance at five localities of the Ain river floodplain in southeastern France, over a period of four years. Using 190 AFLP loci, we monitored the genetic diversity of Radix balthica, one of the most abundant gastropod species of the metacommunity, twice during that period. An exceptionally intense drought occurred during the last two years and differentially affected the study sites. This allowed us to test the effect of natural disturbances on changes in both genetic and species diversity. Overall, local (alpha) diversity declined as reflected by lower values of gene diversity H(S) and evenness. In parallel, the among-sites (beta) diversity increased at both the genetic (F(ST)) and species (F(STC)) levels. These results suggest that disturbances can lead to similar changes in genetic and community structure through the combined effects of selective and neutral processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural selection can drive the repeated evolution of reproductive isolation, but the genomic basis of parallel speciation remains poorly understood. We analyzed whole-genome divergence between replicate pairs of stick insect populations that are adapted to different host plants and undergoing parallel speciation. We found thousands of modest-sized genomic regions of accentuated divergence between populations, most of which are unique to individual population pairs. We also detected parallel genomic divergence across population pairs involving an excess of coding genes with specific molecular functions. Regions of parallel genomic divergence in nature exhibited exceptional allele frequency changes between hosts in a field transplant experiment. The results advance understanding of biological diversification by providing convergent observational and experimental evidence for selection's role in driving repeatable genomic divergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent advance in high-throughput sequencing and genotyping protocols allows rapid investigation of Mendelian and complex diseases on a scale not previously been possible. In my thesis research I took advantage of these modern techniques to study retinitis pigmentosa (RP), a rare inherited disease characterized by progressive loss of photoreceptors and leading to blindness; and hypertension, a common condition affecting 30% of the adult population. Firstly, I compared the performance of different next generation sequencing (NGS) platforms in the sequencing of the RP-linked gene PRPF31. The gene contained a mutation in an intronic repetitive element, which presented difficulties for both classic sequencing methods and NGS. We showed that all NGS platforms are powerful tools to identify rare and common DNA variants, also in case of more complex sequences. Moreover, we evaluated the features of different NGS platforms that are important in re-sequencing projects. The main focus of my thesis was then to investigate the involvement of pre-mRNA splicing factors in autosomal dominant RP (adRP). I screened 5 candidate genes in a large cohort of patients by using long-range PCR as enrichment step, followed by NGS. We tested two different approaches: in one, all target PCRs from all patients were pooled and sequenced as a single DNA library; in the other, PCRs from each patient were separated within the pool by DNA barcodes. The first solution was more cost-effective, while the second one allowed obtaining faster and more accurate results, but overall they both proved to be effective strategies for gene screenings in many samples. We could in fact identify novel missense mutations in the SNRNP200 gene, encoding an essential RNA helicase for splicing catalysis. Interestingly, one of these mutations showed incomplete penetrance in one family with adRP. Thus, we started to study the possible molecular causes underlying phenotypic differences between asymptomatic and affected members of this family. For the study of hypertension, I joined a European consortium to perform genome-wide association studies (GWAS). Thanks to the use of very informative genotyping arrays and of phenotipically well-characterized cohorts, we could identify a novel susceptibility locus for hypertension in the promoter region of the endothelial nitric oxide synthase gene (NOS3). Moreover, we have proven the direct causality of the associated SNP using three different methods: 1) targeted resequencing, 2) luciferase assay, and 3) population study. - Le récent progrès dans le Séquençage à haut Débit et les protocoles de génotypage a permis une plus vaste et rapide étude des maladies mendéliennes et multifactorielles à une échelle encore jamais atteinte. Durant ma thèse de recherche, j'ai utilisé ces nouvelles techniques de séquençage afin d'étudier la retinite pigmentale (RP), une maladie héréditaire rare caractérisée par une perte progressive des photorécepteurs de l'oeil qui entraine la cécité; et l'hypertension, une maladie commune touchant 30% de la population adulte. Tout d'abord, j'ai effectué une comparaison des performances de différentes plateformes de séquençage NGS (Next Generation Sequencing) lors du séquençage de PRPF31, un gène lié à RP. Ce gène contenait une mutation dans un élément répétable intronique, qui présentait des difficultés de séquençage avec la méthode classique et les NGS. Nous avons montré que les plateformes de NGS analysées sont des outils très puissants pour identifier des variations de l'ADN rares ou communes et aussi dans le cas de séquences complexes. De plus, nous avons exploré les caractéristiques des différentes plateformes NGS qui sont importantes dans les projets de re-séquençage. L'objectif principal de ma thèse a été ensuite d'examiner l'effet des facteurs d'épissage de pre-ARNm dans une forme autosomale dominante de RP (adRP). Un screening de 5 gènes candidats issus d'une large cohorte de patients a été effectué en utilisant la long-range PCR comme étape d'enrichissement, suivie par séquençage avec NGS. Nous avons testé deux approches différentes : dans la première, toutes les cibles PCRs de tous les patients ont été regroupées et séquencées comme une bibliothèque d'ADN unique; dans la seconde, les PCRs de chaque patient ont été séparées par code barres d'ADN. La première solution a été la plus économique, tandis que la seconde a permis d'obtenir des résultats plus rapides et précis. Dans l'ensemble, ces deux stratégies se sont démontrées efficaces pour le screening de gènes issus de divers échantillons. Nous avons pu identifier des nouvelles mutations faux-sens dans le gène SNRNP200, une hélicase ayant une fonction essentielle dans l'épissage. Il est intéressant de noter qu'une des ces mutations montre une pénétrance incomplète dans une famille atteinte d'adRP. Ainsi, nous avons commencé une étude sur les causes moléculaires entrainant des différences phénotypiques entre membres affectés et asymptomatiques de cette famille. Lors de l'étude de l'hypertension, j'ai rejoint un consortium européen pour réaliser une étude d'association Pangénomique ou genome-wide association study Grâce à l'utilisation de tableaux de génotypage très informatifs et de cohortes extrêmement bien caractérisées au niveau phénotypique, un nouveau locus lié à l'hypertension a été identifié dans la région promotrice du gène endothélial nitric oxide sinthase (NOS3). Par ailleurs, nous avons prouvé la cause directe du SNP associé au moyen de trois méthodes différentes: i) en reséquençant la cible avec NGS, ii) avec des essais à la luciférase et iii) une étude de population.