76 resultados para Palmitate Uptake
em Université de Lausanne, Switzerland
Resumo:
Sulfur (S) is an essential macronutrient for all living organisms. Plants require large amounts of sulfate for growth and development, and this serves as a major entry point of sulfate into the food web. Plants acquire S in its ionic form from the soil; they have evolved tightly controlled mechanisms for the regulation of sulfate uptake in response to its external and internal availability. In the model plant Arabidopsis thaliana, the first key step in sulfate uptake is presumed to be carried out exclusively by only two high-affinity sulfate transporters: SULTR1;1 and SULTR1;2. A better understanding of the mode of regulation for these two transporters is crucial because they constitute the first determinative step in balancing sulfate in respect to its supply and demand. Here, we review the recent progress achieved in our comprehension of (i) mechanisms that regulate these two high-affinity sulfate transporters at the transcriptional and post-transcriptional levels, and (ii) their structure-function relationship. Such progress is important to enable biotechnological and agronomic strategies aimed at enhancing sulfate uptake and improving crop yield in S-deficient soils.
Resumo:
OBJECTIVE: Study of the uptake of new medical technologies provides useful information on the transfer of published evidence into usual practice. We conducted an audit of selected hospitals in three countries (Canada, France, and Switzerland) to identify clinical predictors of low-molecular-weight (LMW) heparin use and outpatient treatment, and to compare the pace of uptake of these new therapeutic approaches across hospitals. DESIGN: Historical review of medical records. SETTING AND PARTICIPANTS: We reviewed the medical records of 3043 patients diagnosed with deep vein thrombosis (DVT) in five Canadian, two French, and two Swiss teaching hospitals from 1994 to 1998. Measures. We explored independent clinical variables associated with LMW heparin use and outpatient treatment, and determined crude and adjusted rates of LMW heparin use and outpatient treatment across hospitals. RESULTS: For the years studied, the overall rates of LMW heparin use and outpatient treatment in the study sample were 34.1 and 15.8%, respectively, with higher rates of use in later years. Many comorbidities were negatively associated with outpatient treatment, and risk-adjusted rates of use of these new approaches varied significantly across hospitals. CONCLUSION: There has been a relatively rapid uptake of LMW heparins and outpatient treatment for DVT in their early years of availability, but the pace of uptake has varied considerably across hospitals and countries.
Resumo:
In Pseudomonas aeruginosa carbon catabolite repression (CCR) is exerted by the CbrA/B-CrcZ-Crc global regulatory system. Crc is a translational repressor that, in the presence of preferred carbon sources, such as C4 -dicarboxylates, impairs the utilization of less preferred substrates. When non-preferred substrates are present, the CrcZ sRNA levels increase leading to Crc capture, thereby allowing growth of the bacterium at the expense of the non-preferred substrates. The C4 -dicarboxylate transport (Dct) system in P. aeruginosa is composed of two main transporters: DctA, more efficient at mM succinate concentrations, and DctPQM, more important at μM. In this study, we demonstrate that the Dct transporters are differentially regulated by Crc, depending on the concentration of succinate. At high concentrations, Crc positively regulates the expression of the dctA transporter gene and negatively regulates dctPQM post-transcriptionally. The activation of dctA is explained by a Crc-mediated repression of dctR, encoding a transcriptional repressor of dctA. At low succinate concentrations, Crc regulation is impaired. In this condition, CrcZ levels are higher and therefore more Crc proteins are sequestered, decreasing the amount of Crc available to perform CCR on dctR and dctPQM. As a result, expression of dctA is reduced and that of dctPQM is increased.
Resumo:
Bacteria often possess multiple siderophore-based iron uptake systems for scavenging this vital resource from their environment. However, some siderophores seem redundant, because they have limited iron-binding efficiency and are seldom expressed under iron limitation. Here, we investigate the conundrum of why selection does not eliminate this apparent redundancy. We focus on Pseudomonas aeruginosa, a bacterium that can produce two siderophores-the highly efficient but metabolically expensive pyoverdine, and the inefficient but metabolically cheap pyochelin. We found that the bacteria possess molecular mechanisms to phenotypically switch from mainly producing pyoverdine under severe iron limitation to mainly producing pyochelin when iron is only moderately limited. We further show that strains exclusively producing pyochelin grew significantly better than strains exclusively producing pyoverdine under moderate iron limitation, whereas the inverse was seen under severe iron limitation. This suggests that pyochelin is not redundant, but that switching between siderophore strategies might be beneficial to trade off efficiencies versus costs of siderophores. Indeed, simulations parameterized from our data confirmed that strains retaining the capacity to switch between siderophores significantly outcompeted strains defective for one or the other siderophore under fluctuating iron availabilities. Finally, we discuss how siderophore switching can be viewed as a form of collective decision-making, whereby a coordinated shift in behaviour at the group level emerges as a result of positive and negative feedback loops operating among individuals at the local scale.
Resumo:
To study the adaptation of natural killer (NK) cells to their major histocompatibility complex (MHC) class I environment we have established a novel mouse model with mosaic expression of H-2D(d) using a Cre/loxP system. In these mice, we noticed that NK cells expressing the inhibitory receptor for D(d), Ly49A, were specifically underrepresented among cells with low D(d) levels. That was due to the acquisition of D(d) molecules by the Ly49A+ NK cells that have lost their D(d) transgene. The uptake of H-2D molecules via the Ly49A receptor was restricted to strong ligands of Ly49A. Surprisingly, when Ly49A+ NK cells were D(d+), uptake of the alternative ligand D(k) was not detectable. Similarly, one anti-Ly49A mAb (A1) bound inefficiently when Ly49A was expressed on D(d+) NK cells. Concomitantly, functional assays demonstrated a reduced capacity of Ly49A to inhibit H-2(b)D(d) as compared with H-2(b) NK cells, rendering Ly49A+ NK cells in D(d+) mice particularly reactive. Minor reductions of D(d) levels and/or increases of activating ligands on environmental cells may thus suffice to abrogate Ly49A-mediated NK cell inhibition. The mechanistic explanation for all these phenomena is likely the partial masking of Ly49A by D(d) on the same cell via a lateral binding site in the H-2D(d) molecule.
Resumo:
The distribution of free and liposomal doxorubicin (Liporubicin) administered by intravenous injection (IV) or isolated lung perfusion (ILP) was compared in normal and tumor tissues of sarcoma bearing rodent lungs. A single sarcomatous tumor was generated in the left lung of 35 Fischer rats, followed 10 days later by left-sided ILP (n=20) or IV drug administration (n=12), using 100 microg and 400 microg free or liposomal doxorubicin, respectively. The tumor and lung tissue drug concentration was measured by HPLC. Free doxorubicin administered by ILP resulted in a three-fold (100 microg) and 10-fold (400 microg) increase of the drug concentration in the tumor and normal lung tissue compared to IV administration. In contrast, ILP with Liporubicin resulted in a similar drug uptake in the tumor and lung tissue compared to IV injection. For both drug formulations and dosages, ILP resulted in a higher tumor to lung tissue drug ratio but also in a higher spatial heterogeneity of drug distribution within the lung compared to IV administration. ILP resulted in a higher tumor to lung tissue drug ratio and in a more heterogeneous drug distribution within the lung compared to IV drug administration.
Resumo:
Phagocytosis, whether of food particles in protozoa or bacteria and cell remnants in the metazoan immune system, is a conserved process. The particles are taken up into phagosomes, which then undergo complex remodeling of their components, called maturation. By using two-dimensional gel electrophoresis and mass spectrometry combined with genomic data, we identified 179 phagosomal proteins in the amoeba Dictyostelium, including components of signal transduction, membrane traffic, and the cytoskeleton. By carrying out this proteomics analysis over the course of maturation, we obtained time profiles for 1,388 spots and thus generated a dynamic record of phagosomal protein composition. Clustering of the time profiles revealed five clusters and 24 functional groups that were mapped onto a flow chart of maturation. Two heterotrimeric G protein subunits, Galpha4 and Gbeta, appeared at the earliest times. We showed that mutations in the genes encoding these two proteins produce a phagocytic uptake defect in Dictyostelium. This analysis of phagosome protein dynamics provides a reference point for future genetic and functional investigations.
Resumo:
BACKGROUND: Visudyne®-mediated photodynamic therapy (PDT) at low drug/light conditions has shown to selectively enhance the uptake of liposomal doxorubicin in subpleural localized sarcoma tumors grown on rodent lungs without causing morphological alterations of the lung. The present experiments explore the impact of low-dose PDT on liposomal doxorubicin (Liporubicin™) uptake to different tumor types grown on rodent lungs. MATERIAL AND METHODS: Three groups of Fischer rats underwent subpleural generation of sarcoma, mesothelioma, or adenocarcinoma tumors on the left lung. At least five animals of each group (sarcoma, n = 5; mesothelioma, n = 7; adenocarcinoma, n = 5) underwent intraoperative low-dose (10 J/cm(2) at 35 mW/cm(2) ) PDT with 0.0625 mg/kg Visudyne® of the tumor and the lower lobe. This was followed by intravenous (IV) administration of 400 µg Liporubicin™. After a circulation time of 60 min, the tumor-bearing lung was processed for HPLC analyses. At least five animals per group underwent the same procedure but without PDT (sarcoma, n = 5; mesothelioma, n = 5; adenocarcinoma, n = 6). Five untreated animals per group underwent CD31 immunostaining of their tumors with histomorphometrical assessment of the tumor vascularization. RESULTS: Low-dose PDT significantly enhanced Liporubicin™ uptake to all tumor types (sarcoma, P = 0.0007; mesothelioma, P = 0.001; adenocarcinoma, P = 0.02) but not to normal lung tissue compared to IV drug administration alone. PDT led to a significantly increased ratio of tumor to lung tissue drug uptake for all three tumor types (P < 0.05). However, the tumor drug uptake varied between tumor types and paralleled tumor vascular density. The vascular density was significantly higher in sarcoma than in adenocarcinoma (P < 0.001) and mesothelioma (P < 0.001), whereas there was no significant difference between adenocarcinoma and mesothelioma. CONCLUSION: Low-dose Visudyne®-mediated PDT selectively enhances the uptake of systemically administered liposomal doxorubicin in tumors without affecting the drug uptake to normal lung. However, drug uptake varied significantly between tumor types and paralleled tumor vascular density.
Resumo:
Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.
Resumo:
PURPOSE: The aim of this study was to compare VO2 kinetics during constant power cycle exercise measured using a conventional facemask (CM) or a respiratory snorkel (RS) designed for breath-by-breath analysis in swimming. METHODS: VO2 kinetics parameters-obtained using CM or RS, in randomized counterbalanced order-were compared in 10 trained triathletes performing two submaximal heavy-intensity cycling square-wave transitions. These VO2 kinetics parameters (ie, time delay: td1, td2; time constant: τ1, τ2; amplitude: A1, A2, for the primary phase and slow component, respectively) were modeled using a double exponential function. In the case of the RS data, this model incorporated an individually determined snorkel delay (ISD). RESULTS: Only td1 (8.9 ± 3.0 vs 13.8 ± 1.8 s, P < .01) differed between CM and RS, whereas all other parameters were not different (τ1 = 24.7 ± 7.6 vs 21.1 ± 6.3 s; A1 = 39.4 ± 5.3 vs 36.8 ± 5.1 mL x min(-1) x kg(-1); td2 = 107.5 ± 87.4 vs 183.5 ± 75.9 s; A2' (relevant slow component amplitude) = 2.6 ± 2.4 vs 3.1 ± 2.6 mL x min(-1) x kg(-1) for CM and RS, respectively). CONCLUSIONS: Although there can be a small mixture of breaths allowed by the volume of the snorkel in the transition to exercise, this does not appear to significantly influence the results. Therefore, given the use of an ISD, the RS is a valid instrument for the determination of VO2 kinetics within submaximal exercise.
Resumo:
Oxidative metabolism of the isolated embryonic heart of the chick has been determined using a spectrophotometric technique allowing global as well as localized micromeasurements of the O2 uptake. Entire hearts, excised from embryos of 10 somites (primordia fused, stage 10 HH) and 40 somites (S shaped, stage 20 HH) were placed in a special chamber under controlled metabolic conditions where they continued to beat spontaneously and regularly. During the 32 h of development, the O2 consumption of the whole heart increased from 0.9 +/- 0.1 to 5.3 +/- 0.8 nmol O2/h. These values corrected for protein content were, however, comparable (0.45 nmol O2.h-1.micrograms-1). At stage 10-12, the O2 uptake varied along the cardiac tube (from 0.74 to 1.0 nmol O2.h-1.mm-2). From stage 10 to 20, the O2 uptake per unit area of ventricle wall increased from 0.7 +/- 0.2 to 1.8 +/- 0.2 nmol O2.h-1.mm-2, and the O2 uptake per myocardial volume during one cardiac cycle varied from 7 to 2.5 nmol O2/cm3. These results indicate that, despite an intense morphogenesis, the cardiac tissue has a rather low and stable oxidative metabolism, although the O2 requirement of the whole heart increases significantly. Moreover, the normalized suprabasal aerobic energy expenditure decreases throughout early cardiogenesis. The functional integrity of the isolated embryonic heart combined with the experimental possibilities of the microtechnique make the preparation appropriate for studying the changes in cardiac metabolism during development.
Resumo:
To compare the effect of hyperthermia on maximal oxygen uptake (VO2max) in men and women, VO2max was measured in 11 male and 11 female runners under seven conditions involving various ambient temperatures (Ta at 50% RH) and preheating designed to manipulate the esophageal (Tes) and mean skin (Tsk) temperatures at VO2max. The conditions were: 25 degrees C, no preheating (control); 25, 35, 40, and 45 degrees C, with exercise-induced preheating by a 20-min walk at approximately 33% of control VO2max; 45 degrees C, no preheating; and 45 degrees C, with passive preheating during which Tes and Tsk were increased to the same degree as at the end of the 20-min walk at 45 degrees C. Compared to VO2max (l x min(-1)) in the control condition (4.52+/-0.46 in men, 3.01+/-0.45 in women), VO2max in men and women was reduced with exercise-induced or passive preheating and increased Ta, approximately 4% at 35 degrees C, approximately 9% at 40 degrees C and approximately 18% at 45 degrees C. Percentage reductions (7-36%) in physical performance (treadmill test time to exhaustion) were strongly related to reductions in VO2max (r=0.82-0.84). The effects of hyperthermia on VO2max and physical performance in men and women were almost identical. We conclude that men and women do not differ in their thermal responses to maximal exercise, or in the relationship of hyperthermia to reductions in VO2max and physical performance at high temperature. Data are reported as mean (SD) unless otherwise stated.
Resumo:
Inconsistencies about dynamic asymmetry between the on- and off-transient responses in VO2 are found in the literature. Therefore the purpose of this study was to examine VO2 on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT), or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of VO2 during cycling exercise in the heavy-intensity domain.
Resumo:
Inconsistencies about dynamic asymmetry between the on- and off-transient responses in .VO2 are found in the literature. Therefore the purpose of this study was to examine .VO2on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. .VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT) or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of .VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of .VO2 during cycling exercise in the heavy-intensity domain.
Resumo:
The contribution of respiratory muscle work to the development of the O(2) consumption (Vo(2)) slow component is a point of controversy because it has been shown that the increased ventilation in hypoxia is not associated with a concomitant increase in Vo(2) slow component. The first purpose of this study was thus to test the hypothesis of a direct relationship between respiratory muscle work and Vo(2) slow component by manipulating inspiratory resistance. Because the conditions for a Vo(2) slow component specific to respiratory muscle can be reached during intense exercise, the second purpose was to determine whether respiratory muscles behave like limb muscles during heavy exercise. Ten trained subjects performed two 8-min constant-load heavy cycling exercises with and without a threshold valve in random order. Vo(2) was measured breath by breath by using a fast gas exchange analyzer, and the Vo(2) response was modeled after removal of the cardiodynamic phase by using two monoexponential functions. As anticipated, when total work was slightly increased with loaded inspiratory resistance, slight increases in base Vo(2), the primary phase amplitude, and peak Vo(2) were noted (14.2%, P < 0.01; 3.5%, P > 0.05; and 8.3%, P < 0.01, respectively). The bootstrap method revealed small coefficients of variation for the model parameter, including the slow-component amplitude and delay (15 and 19%, respectively), indicating an accurate determination for this critical parameter. The amplitude of the Vo(2) slow component displayed a 27% increase from 8.1 +/- 3.6 to 10.3 +/- 3.4 ml. min(-1). kg(-1) (P < 0.01) with the addition of inspiratory resistance. Taken together, this increase and the lack of any differences in minute volume and ventilatory parameters between the two experimental conditions suggest the occurrence of a Vo(2) slow component specific to the respiratory muscles in loaded condition.