176 resultados para PYRUVATE-DEHYDROGENASE

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally.The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. RESULTS: In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. CONCLUSION: These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indirect evidence suggests that activity of pyruvate dehydrogenase (PDH) influences recovery of the myocardium after transient ischemia. The present study examined the relationship between postischemic injury and activity of PDH and the role of mitochondrial calcium uptake for observed changes in PDH activity. Isovolumically beating isolated rat hearts perfused with erythrocyte-enriched buffer containing glucose, palmitate, and insulin were submitted to either 20 or 35 min of no-flow ischemia. After 20 min of no-flow ischemia, hearts exhibited complete recovery of developed left ventricular pressure (DLVP). The proportion of myocardial PDH in the active state was modestly increased to 38% (compared with 13% in control hearts) without a change in glucose oxidation. In contrast, in hearts subjected to 35 min of no-flow ischemia (which exhibited poor recovery of DLVP), there was marked stimulation of glucose oxidation (+460%; P < 0.01) and pronounced increase in the active fraction of PDH to 72% (P < 0.01). Glycolytic flux was not significantly altered. Ruthenium red (6 microM) completely abolished the activation of PDH and the increase in glucose oxidation. The results indicate that variable stimulation of glucose oxidation during reperfusion is related to different degrees of activation of PDH, which depends on the severity of the ischemic injury. Activation of PDH seems to be mediated by myocardial calcium uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common disorder leading to lactic acidemia. Phosphorylation of specific serine residues of the E1-alpha subunit of the PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We recently found that phenylbutyrate prevents phosphorylation of the E1-alpha subunit of the branched-chain ketoacid dehydrogenase complex (BCKDC) and reduces plasma concentrations of neurotoxic branched chain amino acids in patients with maple syrup urine disease (MSUD), due to the deficiency of BCKDC. We hypothesized that, similarly to BCKDC, phenylbutyrate enhances PDHC enzymatic activity by increasing the portion of unphosphorylated enzyme. To test this hypothesis, we treated wild-type human fibroblasts at different concentrations of phenylbutyrate and found that it reduces the levels of phosphorylated E1-alpha as compared to untreated cells. To investigate the effect of phenylbutyrate in vivo, we administered phenylbutyrate to C57B6 wild-type mice and we detected a significant increase in Pdhc enzyme activity and a reduction of phosphorylated E1-alpha subunit in brains and muscles as compared to saline treated mice. Being a drug already approved for human use, phenylbutyrate has great potential for increasing the residual enzymatic activity of PDHC and to improve the clinical phenotype of PDHC deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigated the variations of the maximal activities of the rate-controlling glycolytic enzymes (i.e., hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK) and of the pyruvate-dehydrogenase complex (PDHc) during the early embryogenesis of Xenopus laevis (from cleavage through hatching). All the enzymatic assays, using different coupled reactions, were performed spectrophotometrically on cytosolic and mitochondrial fractions. The maximal HK activity increases markedly from neurulation onwards, PFK activity presents a peak around gastrulation, PK activity remains relatively constant throughout the period studied and the highest PDHc activity is observed during cleavage. The specific activities display the same temporal pattern. Furthermore, in the sequence of reactions by which glucose is degraded to form acetyl-CoA, the maximal activities of PFK and PK are not limiting while those of HK and PDHc could be rate-limiting at relatively late developmental stages (hatching).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type 2 diabetes has been related to a decrease of mitochondrial DNA (mtDNA) content. In this study, we show increased expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) and its target genes involved in fatty acid metabolism in skeletal muscle of Zucker Diabetic Fatty (ZDF) (fa/fa) rats. In contrast, the mRNA levels of genes involved in glucose transport and utilization (GLUT4 and phosphofructokinase) were decreased, whereas the expression of pyruvate dehydrogenase kinase 4 (PDK-4), which suppresses glucose oxidation, was increased. The shift from glucose to fatty acids as the source of energy in skeletal muscle of ZDF rats was accompanied by a reduction of subunit 1 of complex I (NADH dehydrogenase subunit 1, ND1) and subunit II of complex IV (cytochrome c oxidase II, COII), two genes of the electronic transport chain encoded by mtDNA. The transcript levels of PPARgamma Coactivator 1 (PGC-1) showed a significant reduction. Treatment with troglitazone (30 mg/kg/day) for 15 days reduced insulin values and reversed the increase in PDK-4 mRNA levels, suggesting improved insulin sensitivity. In addition, troglitazone treatment restored ND1 and PGC-1 expression in skeletal muscle. These results suggest that troglitazone may avoid mitochondrial metabolic derangement during the development of diabetes mellitus 2 in skeletal muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although all brain cells bear in principle a comparable potential in terms of energetics, in reality they exhibit different metabolic profiles. The specific biochemical characteristics explaining such disparities and their relative importance are largely unknown. Using a modeling approach, we show that modifying the kinetic parameters of pyruvate dehydrogenase and mitochondrial NADH shuttling within a realistic interval can yield a striking switch in lactate flux direction. In this context, cells having essentially an oxidative profile exhibit pronounced extracellular lactate uptake and consumption. However, they can be turned into cells with prominent aerobic glycolysis by selectively reducing the aforementioned parameters. In the case of primarily oxidative cells, we also examined the role of glycolysis and lactate transport in providing pyruvate to mitochondria in order to sustain oxidative phosphorylation. The results show that changes in lactate transport capacity and extracellular lactate concentration within the range described experimentally can sustain enhanced oxidative metabolism upon activation. Such a demonstration provides key elements to understand why certain brain cell types constitutively adopt a particular metabolic profile and how specific features can be altered under different physiological and pathological conditions in order to face evolving energy demands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resting skeletal muscle has a preference for the oxidation of lipids compared to carbohydrates and a shift towards carbohydrate oxidation is observed with increasing exercise. Lactate is not only an end product in skeletal muscle but also an important metabolic intermediate for mitochondrial oxidation. Recent advances in hyperpolarized MRS allow the measurement of substrate metabolism in vivo in real time. The aim of this study was to investigate the use of hyperpolarized 13C lactate as a substrate for metabolic studies in skeletal muscle in vivo. Carbohydrate metabolism in healthy rat skeletal muscle at rest was studied in different nutritional states using hyperpolarized [1-13C]lactate, a substrate that can be injected at physiological concentrations and leaves other oxidative processes undisturbed. 13C label incorporation from lactate into bicarbonate in fed animals was observed within seconds but was absent after an overnight fast, representing inhibition of the metabolic flux through pyruvate dehydrogenase (PDH). A significant decrease in 13C labeling of alanine was observed comparing the fed and fasted group, and was attributed to a change in cellular alanine concentration and not a decrease in enzymatic flux through alanine transaminase. We conclude that hyperpolarized [1-13C]lactate can be used to study carbohydrate oxidation in resting skeletal muscle at physiological levels. The herein proposed method allows probing simultaneously both PDH activity and variations in alanine tissue concentration, which are associated with metabolic dysfunctions. A simple alteration of the nutritional state demonstrated that the observed pyruvate, alanine, and bicarbonate signals are indeed sensitive markers to probe metabolic changes in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUME Il a longtemps été admis que le glucose était le principal, sinon le seul substrat du métabolisme énergétique cérébral. Néanmoins, des études récentes indiquent que dans des situations particulières, d'autres substrats peuvent être employés. C'est le cas des monocarboxylates (lactate et pyruvate principalement). Bien que la barrière hématoencéphalique soit peu perméable à ces molécules, elles deviennent néanmoins des substrats possibles si elles sont produites localement. Les deux systèmes enzymatiques pivots des voies glycolytiques et oxydatives sont la lactate déshydrogénase (LDH, EC 1.1.1.27) qui catalyse l'interconversion du pyruvate et du lactate et le complexe pyruvate déshydrogénase qui catalyse la conversion irréversible du pyruvate en acétyl-CoA qui entre dans la respiration mitochondriale. Nous avons étudié la localisation, tant régionale que cellulaire, des isoformes LDH-1, LDH-5 et PDHEla dans le cerveau du chat et dé l'homme au moyen de diverses techniques histologiques. Dans un premier temps, des investigations par hybridation in situ au moyen d'oligosondes marquées au 33P sur de coupes de cerveau de chat ont permis de montrer une différence de l'expression des enzymes à vocation oxydative (LDH-1 et PDHA1, le gène codant pour la protéine PDHEIa) par rapport à LDH-5, isoforme qui catalyse préférentiellement la formation de lactate. LDH-1 et PDHA 1 ont des distributions similaires et sont enrichies dans de nombreuses structures cérébrales, comme l'hippocampe, de nombreux noyaux thalamiques et des structures pontiques. Le cortex cérébral exhibe également une expression importante de LDH-1 et PDH. LDH-5 a par contre une expression largement plus diffuse à travers le cerveau, bien que l'on trouve néanmoins un enrichissement plus important dans l'hippocampe. Ces résultats sont en accord avec les observations que nous avons précédemment publiées chez le rongeur pour LDH-1 et LDH-5 (Laughton et collaborateurs, 2000). Des analyses par PCR en temps réel ont confirmé que dans certaines régions, LDH-1 est exprimée de façon nettement plus importante que LDH-5. Dans un deuxième temps, nous avons appliqué sur des coupes histologiques d'hippocampe et de cortex occipital humain post-mortem des anticorps monoclonaux spécifiques de l'isoforme LDH-5 et la sous-unité PDHela du complexe pyruvate déshydrogénase. Là aussi, les immunoréactions révèlent une ségrégation régionale mais aussi cellulaire des deux enzymes. Dans les deux régions étudiées, LDH-5 est localisée exclusivement dans les astrocytes. Dans le cortex occipital, la matière blanche et également la couche I corticale sont immunopositives pour LDH-5. Dans l'hippocampe, le CA4 et l'alveus exhibe l'immunomarquage le plus intense pour LDH-5. Seuls des neurones (à de rares exceptions quelques astrocytes) sont immunopositifs à l'anticorps monoclonal dirigé contre PDHela. La couche IV du cortex occipital présente la plus forte immunoréaction. Dans l'hippocampe, une immunoréactivité est observée dans le stratum granulosum et à travers la région CA1 jusqu'à la région CA3. L'ensemble de ces résultats montre une hétérogénéité métabolique dans le cerveau et étaye l'hypothèse "astrocyte-neurone lactate shuttle" (ANL5) (Bittar et collaborateurs, 1996; Magistretti et Pellerin, 1999) qui propose que les astrocytes fournissent aux neurones activés du lactate comme substrat alternatif de leur métabolisme énergétique. ABSTRACT For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally. The two key enzymatic systems required for the use and production of these substats are lactate dehydrogenase (LDH; EC 1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA cycle and oxydative phosphorylation. Our study consisted in localizing these different systems with various histochemical procedures in the cat brain and two regions, i.e. hippocampus and primary visual cortex, of the human brain. First, by means of in situ hybridization with 33P labeled oligoprobes, we have demonstrated that the more oxidative enzymes (LDH-1 and PDHA1, the gene coding for PDHEla) are highly expressed in a variety of feline brain structures. These structures include the hippocampus, various thalamic nuclei and the pons. The cerebral cortex exhibits also a high LDH-1 and PDHAl expression. On the other hand, LDH-5 expression is poorer and more diffuse, although the hippocampus does seem to have a higher expression. These fmdings are consistent with our previous observation of the expression of LDH1 and LDH-5 in the rodent brain (Laughton et al, 2000). Real-time PCR (TagMan tm) revealed that, in various regions, LDH-1 is effectively more highly expressed than LDH-5. In a second set of experiments, monoclonal antibodies to LDH-5 and PDHeIa were applied to cryostat sections of post-mortem human hippocampus and occipital cortex. These procedures revealed not only that the two enzymes have different regional distributions, but also distinct cellular localisation. LDH-5 immunoreactivity is solely observed in astrocytes. In the occipital cortex, the white matter and layer I are immunopositive. In the hippocampus, the alveus and CA4 show LDH-5 immunoréactivity. PDHeIa has been detected, with few exceptions, only in neurons. Layer IV of the occipital cortex was most immmunoreactive. In the hippocampus, PDHela immunoreactivity is noticed in the stratum granulosum and through CA 1 to CA3 areas. The overall observations made in this study show that there is a metabolic heterogeneity in the brain and our findings support the hypothesis of an astrocyte-neuron lactate shuttle (ANLS)(Bittar et al., 1996; Magistretti & Pellerin, 1999) where astrocytes export to active neurons lactate to fuel their energy demands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The heart relies on continuous energy production and imbalances herein impair cardiac function directly. The tricarboxylic acid (TCA) cycle is the primary means of energy generation in the healthy myocardium, but direct noninvasive quantification of metabolic fluxes is challenging due to the low concentration of most metabolites. Hyperpolarized (13)C magnetic resonance spectroscopy (MRS) provides the opportunity to measure cellular metabolism in real time in vivo. The aim of this work was to noninvasively measure myocardial TCA cycle flux (VTCA) in vivo within a single minute. METHODS AND RESULTS: Hyperpolarized [1-(13)C]acetate was administered at different concentrations in healthy rats. (13)C incorporation into [1-(13)C]acetylcarnitine and the TCA cycle intermediate [5-(13)C]citrate was dynamically detected in vivo with a time resolution of 3s. Different kinetic models were established and evaluated to determine the metabolic fluxes by simultaneously fitting the evolution of the (13)C labeling in acetate, acetylcarnitine, and citrate. VTCA was estimated to be 6.7±1.7μmol·g(-1)·min(-1) (dry weight), and was best estimated with a model using only the labeling in citrate and acetylcarnitine, independent of the precursor. The TCA cycle rate was not linear with the citrate-to-acetate metabolite ratio, and could thus not be quantified using a ratiometric approach. The (13)C signal evolution of citrate, i.e. citrate formation was independent of the amount of injected acetate, while the (13)C signal evolution of acetylcarnitine revealed a dose dependency with the injected acetate. The (13)C labeling of citrate did not correlate to that of acetylcarnitine, leading to the hypothesis that acetylcarnitine formation is not an indication of mitochondrial TCA cycle activity in the heart. CONCLUSIONS: Hyperpolarized [1-(13)C]acetate is a metabolic probe independent of pyruvate dehydrogenase (PDH) activity. It allows the direct estimation of VTCA in vivo, which was shown to be neither dependent on the administered acetate dose nor on the (13)C labeling of acetylcarnitine. Dynamic (13)C MRS coupled to the injection of hyperpolarized [1-(13)C]acetate can enable the measurement of metabolic changes during impaired heart function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vertebrates, the interconversion of lactate and pyruvate is catalyzed by the enzyme lactate dehydrogenase. Two distinct subunits combine to form the five tetrameric isoenzymes of lactate dehydrogenase. The LDH-5 subunit (muscle type) has higher maximal velocity (Vmax) and is present in glycolytic tissues, favoring the formation of lactate from pyruvate. The LDH-1 subunit (heart type) is inhibited by pyruvate and therefore preferentially drives the reaction toward the production of pyruvate. There is mounting evidence indicating that during activation the brain resorts to the transient glycolytic processing of glucose. Indeed, transient lactate formation during physiological stimulation has been shown by 1H-magnetic resonance spectroscopy. However, since whole-brain arteriovenous studies under basal conditions indicate a virtually complete oxidation of glucose, the vast proportion of the lactate transiently formed during activation is likely to be oxidized. These in vivo data suggest that lactate may be formed in certain cells and oxidized in others. We therefore set out to determine whether the two isoforms of lactate dehydrogenase are localized to selective cell types in the human brain. We report here the production and characterization of two rat antisera, specific for the LDH-5 and LDH-1 subunits of lactate dehydrogenase, respectively. Immunohistochemical, immunodot, and western-blot analyses show that these antisera specifically recognize their homologous antigens. Immunohistochemistry on 10 control cases demonstrated a differential cellular distribution between both subunits in the hippocampus and occipital cortex: neurons are exclusively stained with the anti-LDH1 subunit while astrocytes are stained by both antibodies. These observations support the notion of a regulated lactate flux between astrocytes and neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: We have studied human adult cardiac progenitor cells (CPCs) based on high aldehyde dehydrogenase activity (ALDH-hi), a property shared by many stem cells across tissues and organs. However, the role of ALDH in stem cell function is poorly known. In humans, there are 19 ALDH isoforms with different biological activities. The isoforms responsible for the ALDH-hi phenotype of stem cells are not well known but they may include ALDH1A1 and ALDH1A3 isoforms, which function in all-trans retinoic acid (RA) cell signaling. ALDH activity has been shown to regulate hematopoietic stem cell function via RA. We aimed to analyze ALDH isoform expression and the role of RA in human CPC function. Methods: Human adult CPCs were isolated from atrial appendage samples from patients who underwent heart surgery for coronary artery or valve disease. Atrial samples were either cultured as primary explants or enzymatically digested and sorted for ALDH activity by FACS. ALDH isoforms were determined by qRT-PCR. Cells were cultured in the presence or absence of the specific ALDH inhibitor DEAB, with or without RA. Induction of cardiac-specific genes in cells cultured in differentiation medium was measured by qRT-PCR. Results: While ALDH-hi CPCs grew in culture and could be expanded, ALDH-low cells grew poorly. CPC isolated as primary explant outgrowths expressed high levels of ALDH1A3 but not of other isoforms. CPCs isolated from cardiospheres expressed relatively high levels of all the 11 isoforms tested. In contrast, expanded CPCs and cardiosphere-derived cells expressed low levels of all ALDH isoforms. DEAB inhibited CPC growth in a dose-dependent manner, whereas RA rescued CPC growth in the presence of DEAB. In differentiation medium, ALDH-hi CPCs expressed approximately 300-fold higher levels of cardiac troponin T compared with their ALDH-low counterparts. Conclusions: High ALDH activity identifies human adult cardiac cells with high growth and cardiomyogenic potential. ALDH1A3 and, possibly, ALDH1A1 isoforms account for high ALDH activity and RA-mediated regulation of CPC growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anabolic androgenic steroids (AAS) are testosterone derivatives used either clinically, in elite sports, or for body shaping with the goal to increase muscle size and strength. Clinically developed compounds and nonclinically tested designer steroids often marketed as food supplements are widely used. Despite the considerable evidence for various adverse effects of AAS use, the underlying molecular mechanisms are insufficiently understood. Here, we investigated whether some AAS, as a result of a lack of target selectivity, might inhibit 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2)-dependent inactivation of glucocorticoids. Using recombinant human 11β-HSD2, we observed inhibitory effects for several AAS. Whereas oxymetholone, oxymesterone, danazol, and testosterone showed medium inhibitory potential, fluoxymesterone was a potent inhibitor of human 11β-HSD2 (half-maximal inhibitory concentration [IC(50)] of 60-100nM in cell lysates; IC(50) of 160nM in intact SW-620, and 530nM in MCF-7 cells). Measurements with rat kidney microsomes and lysates of cells expressing recombinant mouse 11β-HSD2 revealed much weaker inhibition by the AAS tested, indicating that the adverse effects of AAS-dependent 11β-HSD2 inhibition cannot be investigated in rats and mice. Furthermore, we provide evidence that fluoxymesterone is metabolized to 11-oxofluoxymesterone by human 11β-HSD2. Structural modeling revealed similar binding modes for fluoxymesterone and cortisol, supporting a competitive mode of inhibition of 11β-HSD2-dependent cortisol oxidation by this AAS. No direct modulation of mineralocorticoid receptor (MR) function was observed. Thus, 11β-HSD2 inhibition by fluoxymesterone may cause cortisol-induced MR activation, thereby leading to electrolyte disturbances and contributing to the development of hypertension and cardiovascular disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor approximately 18-25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutaryl-CoA dehydrogenase (GCDH, EC 1.3.99.7) deficiency, known as glutaric acidemia type I, is one of the more common organic acidurias. To investigate the role of this pathway in different organs we studied the tissue-specific expression pattern of rat Gcdh. The open reading frame cDNA of the rat Gcdh gene was cloned from rat brain mRNA by RT-PCR, allowing the synthesis of digoxigenin-labeled in situ hybridization (ISH) riboprobes. Gcdh mRNA expression was analyzed by ISH on cryosections of adult rat brain, kidney, liver, spleen and heart muscle, as well as on E15 and E18 rat embryos. Gcdh was found expressed in the whole rat brain, almost exclusively in neurons. Gcdh was absent from astrocytes but expressed in rare oligodendrocytes. Strong Gcdh expression was found in liver and spleen, where expression appears predominant to lymphatic nodules. In kidney, the highest Gcdh expression is found in the juxtamedullar cortex (but not in glomerula), and at lower levels in medulla. Heart muscle was negative. During embryonic development, Gcdh was found well expressed in liver, intestinal mucosa and skin, as well as at lower levels in CNS. Further studies are ongoing to provide evidence on the presence of the entire pathway in CNS in order to understand the mechanisms leading to neurotoxicity in glutaric aciduria. The high expression of Gcdh in kidney may explain why certain patients with residual enzyme activity are low excretors at the urine metabolite level.