24 resultados para POLYURETHANE FOAM

em Université de Lausanne, Switzerland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Suction-based wound healing devices with open-pore foam interfaces are widely used to treat complex tissue defects. The impact of changes in physicochemical parameters of the wound interfaces has not been investigated. METHODS: Full-thickness wounds in diabetic mice were treated with occlusive dressing or a suction device with a polyurethane foam interface varying in mean pore size diameter. Wound surface deformation on day 2 was measured on fixed tissues. Histologic cross-sections were analyzed for granulation tissue thickness (hematoxylin and eosin), myofibroblast density (α-smooth muscle actin), blood vessel density (platelet endothelial cell adhesion molecule-1), and cell proliferation (Ki67) on day 7. RESULTS: Polyurethane foam-induced wound surface deformation increased with polyurethane foam pore diameter: 15 percent (small pore size), 60 percent (medium pore size), and 150 percent (large pore size). The extent of wound strain correlated with granulation tissue thickness that increased 1.7-fold in small pore size foam-treated wounds, 2.5-fold in medium pore size foam-treated wounds, and 4.9-fold in large pore size foam-treated wounds (p < 0.05) compared with wounds treated with an occlusive dressing. All polyurethane foams increased the number of myofibroblasts over occlusive dressing, with maximal presence in large pore size foam-treated wounds compared with all other groups (p < 0.05). CONCLUSIONS: The pore size of the interface material of suction devices has a significant impact on the wound healing response. Larger pores increased wound surface strain, tissue growth, and transformation of contractile cells. Modification of the pore size is a powerful approach for meeting biological needs of specific wounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Isocyanates are sensitizing chemicals used in various industries such as polyurethane foam production or paint-related purposes. Acting as haptens recognized by T-lymphocytes, they can cause allergic asthma and rarely hypersensitivity pneumonitis (HP). We aim to present a case report of acute HP due to hexamethylene diisocyanate (HDI) in a paint quality controller, a profession not generally considered at a high risk for work-related Isocyanates exposure. Case report: A 30-yr-old otherwise healthy female, light smoker working as a paint quality controller developed shortness of breath, malaise, sweating and chills at workplace six hours after handling a HDI-based hardener. Upon admission to emergency department, symptoms had progressed to severe respiratory failure. HR computer tomography (HRCT) showed bilateral ground-glass attenuation without pleural effusion. Rapid clinical and radiological improvement occurred under facial oxygen supply and systemic steroid therapy. Occupational medicine investigations revealed regular handling of HDI using latex gloves without respiratory protection. Assessment at workplace showed insufficient air renewal (1.5 times per hour), inadequate local aspiration and HDI exposure at levels of 1-4.25 ppb/m3 (Swiss Occupation Exposure Limit 5 ppb/m3). Biological monitoring after identical work procedure executed by a co-worker showed HDI exposure (5.1 micrograms hexamethylene diamine/g creatinine). Resumption of work was disadvised because of the life-threatening event. Discussion: The diagnosis of occupational HP is highly supported by classical findings on imagery and typical symptoms occurring within approved latency interval, associated with rapid clinical improvement. Although neither broncho-alveolar lavage nor specific IgG diagnosis (en route) were performed during the acute episode, various blood tests managed to rule out evidence of an infection or autoimmune disease. Other causes of HP seem unlikely as the patient did not have any recurrence of symptoms since absence from work. Workplace evaluation provided significant information on HDI exposure and allowed substantial recommendations to diminish Isocyanate exposure for the 20 still healthy laboratory co-workers. Although the entryways (air or skin) and precise mechanism of toxicity remain unclear, the present case clearly shows that Isocyanates may trigger acute HP in susceptible workers in a profession not generally considered at a high risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Vacuum-assisted closure (VAC) has become the preferred modality to treat many complex wounds but could be further improved by methods that minimize bleeding and facilitate wound epithelialization. Short fiber poly-N-acetyl glucosamine nanofibers (sNAG) are effective hemostatic agents that activate platelets and facilitate wound epithelialization. We hypothesized that sNAG used in combination with the VAC device could be synergistic in promoting wound healing while minimizing the risk of bleeding. METHODS: Membranes consisting entirely of sNAG nanofibers were applied immediately to dorsal excisional wounds of db/db mice followed by application of the VAC device. Wound healing kinetics, angiogenesis, and wound-related growth factor expression were measured. RESULTS: The application of sNAG membranes to wounds 24 hours before application of the VAC device was associated with a significant activation of wounds (expression of PDGF, TGFβ, EGF), superior granulation tissue formation rich in Collagen I as well as superior wound epithelialization (8.6% ± 0.3% vs. 1.8% ± 1.1% of initial wound size) and wound contraction. CONCLUSIONS: The application of sNAG fiber-containing membranes before the application of the polyurethane foam interface of VAC devices leads to superior healing in db/db mice and represents a promising wound healing adjunct that can also reduce the risk of bleeding complications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Complex wounds pose a major challenge in reconstructive and trauma surgery. Several approaches to increase the healing process have been proposed in the last decades. In this study we study the mechanism of action of the Vacuum Assisted Closure device in diabetic wounds. Methods: Full-thickness wounds were excised in diabetic mice and treated with the VAC device or its isolated components: an occlusive dressing (OD) alone, subathmospheric pressure at 125 mm Hg (Suction), and a polyurethane foam without (Foam) and with (Foamc) downward compression of approximately 125 mm Hg. The last goups were treated with either the complete VAC device (VAC) or with a silicne interface that alows fluid removel (Mepithel-VAC). The effects of the treatment modes on the wound surface were quantified by a two-dimensional immunohistochemical staging system based on vasculature, as defined by blood vessel density (CD31) and cell proliferation (defined by ki67 positivity), 7 days post wounding. Finite element modelling was used to predict wound surface deformation under dressing modes and cross sections of in situ fixed tissues were used to measure actual microstrain. Results: The foam-wound interface of the Vacuum Assisted Closure device causes significant wound stains (60%) causing a deformation of the single cell level leading to a profound upregulation of cell proliferation (4-fold) and angiogenisis (2.2-fold) compared to OD treated wounds. Polyurethane foam exposure itself causes a frather unspecific angiogenic response (Foamc, 2 - fold, Foam, 2.2 - fold) without changes of the cell proliferation rate of the wound bed. Suction alone without a specific interface does not have an effect on meassured parameters, showing similar results to untreated wounds. A perforated silicone interface caused a significant lower microdeforamtion of the wound bed correlating to changes of the wound tissues. Conclusion: The Vacuum Assisted Closure device induce significanttissue growth in diabetic wounds. The wound foam interface under suction causes profound macrodeformation that stimulates tissue growth by angiogenesis and cell proliferation. It needs to be taken in consideration that in the clinical setting different wound types may profit from different elements of this suction device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No earlier study has investigated the microbiology of negative pressure wound therapy (NPWT) foam using a standardized manner. The purpose of this study is to investigate the bacterial load and microbiological dynamics in NPWT foam removed from chronic wounds (>3 months). To determine the bacterial load, a standardized size of the removed NPWT foam was sonicated. The resulting sonication fluid was cultured, and the colony-forming units (CFU) of each species were enumerated. Sixty-eight foams from 17 patients (mean age 63 years, 71% males) were investigated. In 65 (97%) foams, â0/00¥âeuro0/001 and in 37 (54%) â0/00¥2 bacterial types were found. The bacterial load remained high during NPWT treatment, ranging from 10(4) to 10(6) CFU/ml. In three patients (27%), additional type of bacteria was found in subsequent foam cultures. The mean bacterial countâeuro0/00±âeuro0/00standard deviation was higher in polyvinyl alcohol foam (6.1âeuro0/00±âeuro0/000.5 CFU/ml) than in polyurethane (5.5âeuro0/00±âeuro0/000.8 CFU/ml) (pâeuro0/00=âeuro0/000.02). The mean of log of sum of CFU/ml in foam from 125âeuro0/00mmHg (5.5âeuro0/00±âeuro0/000.8) was lower than in foam from 100âeuro0/00mmHg pressure (5.9âeuro0/00±âeuro0/000.5) (pâeuro0/00=âeuro0/000.01). Concluding, bacterial load remains high in NPWT foam, and routine changing does not reduce the load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Negative pressure wound treatment is increasingly used through a Vacuum-Assisted Closure (VAC) device in complex wound situations. For this purpose, sterile polyurethane (PU) and polyvinyl alcohol (PVA) foam dressings are fitted to the wound size and covered with an adhesive drape to create an airtight seal. Little information exists about the type and quantity of microorganisms within the foams. Therefore, we investigated VAC foams after removal from the wound using a validated method (sonication) to detect the bacterial bioburden in the foam consisting as microbial biofilms.Methods: We prospectively included VAC foams (PU and PVA, KCI, Rümlamg, Switzerland) without antibacterial additions (e.g. silver), which were removed from wounds in patients with chronic ulcers from January 2007 through December 2008. Excluded were patients with acute wound infection, necrotizing fasciitis, underlying osteomyelitis or implant. Removed foams from regular changes of dressing were aseptically placed in a container with 100 ml sterile Ringer's solution. Within 4 hours after removal, foams were sonicated for 5 min at 40 kHz (as described in NEJM 2007;357:654). The resulting sonication fluid was cultured at 37°C on aerobic blood agar plates for 5 days. Microbes were quantified as No. of colony-forming units (CFU)/ml sonication fluid and identified to the species level.Results: A total of 68 foams (38 PU and 30 PVA) from 55 patients were included in the study (median age 71 years; range 33-88 years, 57% were man). Foams were removed from the following anatomic sites: sacrum (n=29), ischium (n=18), heel (n=13), calves (n=6) and ankle (n=2). The median duration of being in place was 3 days (range, 1-8 days). In all 68 foams, bacteria were found in large quantities (median 105 CFU/ml, range 102-7 CFU/ml sonication fluid. No differences were found between PU and PVA foams. One type of organisms was found in 11 (16%), two in 17 (24%) and 3 or more in 40 (60%) foams. Gram-negative rods (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa) were isolated in 70%, followed by Staphylococcus aureus (20%), koagulase-negative staphylococci, streptococci (8%), and enterococci (2%).Conclusion: With sonication, a high density of bacteria present in VAC foams was demonstrated after a median of 3 days. Future studies are needed to investigate whether antimicrobial-impregnated foams can reduce the bacterial load in foams and potentially improve wound healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subretinal transplantation of retinal pigment epithelial cells (RPE cells) grown on polymeric supports may have interest in retinal diseases affecting RPE cells. In this study, montmorillonite based polyurethane nanocomposite (PU-NC) was investigated as substrate for human RPE cell growth (ARPE-19 cells). The ARPE-19 cells were seeded on the PU-NC, and cell viability, proliferation and differentiation were investigated. The results indicated that ARPE-19 cells attached, proliferated onto the PU-NC, and expressed occludin. The in vivo ocular biocompatibility of the PU-NC was assessed by using the HET-CAM; and through its implantation under the retina. The direct application of the nanocomposite onto the CAM did not compromise the vascular tissue in the CAM surface, suggesting no ocular irritancy of the PU-NC film. The nanocomposite did not elicit any inflammatory response when implanted into the eye of rats. The PU-NC may have potential application as a substrate for RPE cell transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophages play a central role in the pathogenesis of atherosclerosis by accumulating cholesterol through increased uptake of oxidized low-density lipoproteins by scavenger receptor CD36, leading to foam cell formation. Here we demonstrate the ability of hexarelin, a GH-releasing peptide, to enhance the expression of ATP-binding cassette A1 and G1 transporters and cholesterol efflux in macrophages. These effects were associated with a transcriptional activation of nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma in response to binding of hexarelin to CD36 and GH secretagogue-receptor 1a, the receptor for ghrelin. The hormone binding domain was not required to mediate PPARgamma activation by hexarelin, and phosphorylation of PPARgamma was increased in THP-1 macrophages treated with hexarelin, suggesting that the response to hexarelin may involve PPARgamma activation function-1 activity. However, the activation of PPARgamma by hexarelin did not lead to an increase in CD36 expression, as opposed to liver X receptor (LXR)alpha, suggesting a differential regulation of PPARgamma-targeted genes in response to hexarelin. Chromatin immunoprecipitation assays showed that, in contrast to a PPARgamma agonist, the occupancy of the CD36 promoter by PPARgamma was not increased in THP-1 macrophages treated with hexarelin, whereas the LXRalpha promoter was strongly occupied by PPARgamma in the same conditions. Treatment of apolipoprotein E-null mice maintained on a lipid-rich diet with hexarelin resulted in a significant reduction in atherosclerotic lesions, concomitant with an enhanced expression of PPARgamma and LXRalpha target genes in peritoneal macrophages. The response was strongly impaired in PPARgamma(+/-) macrophages, indicating that PPARgamma was required to mediate the effect of hexarelin. These findings provide a novel mechanism by which the beneficial regulation of PPARgamma and cholesterol metabolism in macrophages could be regulated by CD36 and ghrelin receptor downstream effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the paracortex of the lymph node (LN), T zone fibroblastic reticular cells (TRCs) orchestrate an immune response by guiding lymphocyte migration both physically, by creating three-dimensional (3D) cell networks, and chemically, by secreting the chemokines CCL19 and CCL21 that direct interactions between CCR7-expressing cells, including mature dendritic cells and naive T cells. TRCs also enwrap matrix-based conduits that transport fluid from the subcapsular sinus to high endothelial venules, and fluid flow through the draining LN rapidly increases upon tissue injury or inflammation. To determine whether fluid flow affects TRC organization or function within a 3D network, we regenerated the 3D LN T zone stromal network by culturing murine TRC clones within a macroporous polyurethane scaffold containing type I collagen and Matrigel and applying slow interstitial flow (1-23 microm/min). We show that the 3D environment and slow interstitial flow are important regulators of TRC morphology, organization, and CCL21 secretion. Without flow, CCL21 expression could not be detected. Furthermore, when flow through the LN was blocked in mice in vivo, CCL21 gene expression was down-regulated within 2 h. These results highlight the importance of lymph flow as a homeostatic regulator of constitutive TRC activity and introduce the concept that increased lymph flow may act as an early inflammatory cue to enhance CCL21 expression by TRCs, thereby ensuring efficient immune cell trafficking, lymph sampling, and immune response induction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone substitute materials allowing trans-scaffold migration and in-scaffold survival of human bone-derived cells are mandatory for development of cell-engineered permanent implants to repair bone defects. In this study, we evaluated the influence on human bone-derived cells of the material composition and microstructure of foam scaffolds of calcium aluminate. The scaffolds were prepared using a direct foaming method allowing wide-range tailoring of the microstructure for pore size and pore openings. Human fetal osteoblasts (osteo-progenitors) attached to the scaffolds, migrated across the entire bioceramic depending on the scaffold pore size, colonized, and survived in the porous material for at least 6 weeks. The long-term biocompatibility of the scaffold material for human bone-derived cells was evidenced by in-scaffold determination of cell metabolic activity using a modified MTT assay, a repeated WST-1 assay, and scanning electron microscopy. Finally, we demonstrated that the osteo-progenitors can be covalently bound to the scaffolds using biocompatible click chemistry, thus enhancing the rapid adhesion of the cells to the scaffolds. Therefore, the different microstructures of the foams influenced the migratory potential of the cells, but not cell viability. Scaffolds allow covalent biocompatible chemical binding of the cells to the materials, either localized or widespread integration of the scaffolds for cell-engineered implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND:: Mechanical forces play an important role in tissue neovascularization and are a constituent part of modern wound therapies. The mechanisms by which vacuum assisted closure (VAC) modulates wound angiogenesis are still largely unknown. OBJECTIVE:: To investigate how VAC treatment affects wound hypoxia and related profiles of angiogenic factors as well as to identify the anatomical characteristics of the resultant, newly formed vessels. METHODS:: Wound neovascularization was evaluated by morphometric analysis of CD31-stained wound cross-sections as well as by corrosion casting analysis. Wound hypoxia and mRNA expression of HIF-1α and associated angiogenic factors were evaluated by pimonidazole hydrochloride staining and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Vascular endothelial growth factor (VEGF) protein levels were determined by western blot analysis. RESULTS:: VAC-treated wounds were characterized by the formation of elongated vessels aligned in parallel and consistent with physiologically function, compared to occlusive dressing control wounds that showed formation of tortuous, disoriented vessels. Moreover, VAC-treated wounds displayed a well-oxygenated wound bed, with hypoxia limited to the direct proximity of the VAC-foam interface, where higher VEGF levels were found. By contrast, occlusive dressing control wounds showed generalized hypoxia, with associated accumulation of HIF-1α and related angiogenic factors. CONCLUSIONS:: The combination of established gradients of hypoxia and VEGF expression along with mechanical forces exerted by VAC therapy was associated with the formation of more physiological blood vessels compared to occlusive dressing control wounds. These morphological changes are likely a necessary condition for better wound healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present a processing route to produce multi-structured ceramic foams based on the combination of particle-stabilized foams with polymeric sponges to produce positive and negative templating structures. Polyester sponges are infiltrated with freshly produced calcium aluminate alumina foams and upon sintering either positive templating structures are produced when wetting the sponges, or negative templating foams with a percolating pore network are obtained when completely filling the sponges. Additionally, by combining different layers of these particle-stabilized foam infiltrated sponges, various different structures can be produced, including sandwich structures, pore size gradients, and ceramic bone-like structures applying to different types of bone. The particle-stabilized foams used were in situ self-hardening calcium aluminate cement enriched alumina foams to obtain crack-free samples with pore interconnections and tailorable pore sizes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The diagnosis of microbial ureteral stent colonisation (MUSC) is difficult, since routine diagnostic techniques do not accurately detect microorganisms embedded in biofilms. New methods may improve diagnostic yield and understanding the pathophysiology of MUSC. The aim of the present study was to evaluate the potential of sonication in the detection of MUSC and to identify risk factors for device colonisation. METHODS: Four hundred and eight polyurethane ureteral stents of 300 consecutive patients were prospectively evaluated. Conventional urine culture (CUC) was obtained prior to stent placement and device removal. Sonication was performed to dislodge adherent microorganisms. Data of patient sex and age, indwelling time and indication for stent placement were recorded. RESULTS: Sonicate-fluid culture detected MUSC in 36%. Ureteral stents inserted during urinary tract infection (UTI) were more frequently colonised (59%) compared to those placed in sterile urine (26%; P < 0.001). Female sex (P < 0.001) and continuous stenting (P < 0.005) were significant risk factors for MUSC; a similar trend was observed in patients older than 50 years (P = 0.16). MUSC and indwelling time were positively correlated (P < 0.005). MUSC was accompanied by positive CUC in 36%. Most commonly isolated microorganisms were Coagulase-negative staphylococci (18.3%), Enterococci (17.9%) and Enterobacteriaceae (16.9%). CONCLUSIONS: Sonication is a promising approach in the diagnosis of MUSC. Significant risk factors for MUSC are UTI at the time of stent insertion, female sex, continuous stenting and indwelling time. CUC is a poor predictor of MUSC. The clinical relevance of MUSC needs further evaluation to classify isolated microorganism properly as contaminants or pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: Sclerotherapy is the targeted chemical ablation of varicose veins by intravenous injection of a liquid or foamed sclerosing drug. The treated veins may be intradermal, subcutaneous, and/or transfascial as well as superficial and deep in venous malformations. The aim of this guideline is to give evidence-based recommendations for liquid and foam sclerotherapy. METHODS: This guideline was drafted on behalf of 23 European Phlebological Societies during a Guideline Conference on 7-10 May 2012 in Mainz. The conference was organized by the German Society of Phlebology. These guidelines review the present state of knowledge as reflected in published medical literature. The regulatory situation of sclerosant drugs differs from country to country but this has not been considered in this document. The recommendations of this guideline are graded according to the American College of Chest Physicians Task Force recommendations on Grading Strength of Recommendations and Quality of Evidence in Clinical Guidelines. RESULTS: This guideline focuses on the two sclerosing drugs which are licensed in the majority of the European countries, polidocanol and sodium tetradecyl sulphate. Other sclerosants are not discussed in detail. The guideline gives recommendations concerning indications, contraindications, side-effects, concentrations, volumes, technique and efficacy of liquid and foam sclerotherapy of varicose veins and venous malformations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Although 24-hour arterial blood pressure can be monitored in a free-moving animal using pressure telemetric transmitter mostly from Data Science International (DSI), accurate monitoring of 24-hour mouse left ventricular pressure (LVP) is not available because of its insufficient frequency response to a high frequency signal such as the maximum derivative of mouse LVP (LVdP/dtmax and LVdP/dtmin). The aim of the study was to develop a tiny implantable flow-through LVP telemetric transmitter for small rodent animals, which can be potentially adapted for human 24 hour BP and LVP accurate monitoring. Design and Method: The mouse LVP telemetric transmitter (Diameter: _12 mm, _0.4 g) was assembled by a pressure sensor, a passive RF telemetry chip, and to a 1.2F Polyurethane (PU) catheter tip. The device was developed in two configurations and compared with existing DSI system: (a) prototype-I: a new flow-through pressure sensor with wire link and (b) prototype-II: prototype-I plus a telemetry chip and its receiver. All the devices were applied in C57BL/6J mice. Data are mean_SEM. Results: A high frequency response (>100 Hz) PU heparin saline-filled catheter was inserted into mouse left ventricle via right carotid artery and implanted, LV systolic pressure (LVSP), LVdP/dtmax, and LVdP/dtmin were recorded on day2, 3, 4, 5, and 7 in conscious mice. The hemodynamic values were consistent and comparable (139_4 mmHg, 16634_319, - 12283_184 mmHg/s, n¼5) to one recorded by a validated Pebax03 catheter (138_2mmHg, 16045_443 and -12112_357 mmHg/s, n¼9). Similar LV hemodynamic values were obtained with Prototype-I. The same LVP waveforms were synchronically recorded by Notocord wire and Senimed wireless software through prototype-II in anesthetized mice. Conclusion: An implantable flow-through LVP transmitter (prototype-I) is generated for LVP accurate assessment in conscious mice. The prototype-II needs a further improvement on data transmission bandwidth and signal coupling distance to its receiver for accurate monitoring of LVP in a freemoving mouse.