15 resultados para PM3 semi-empirical method
em Université de Lausanne, Switzerland
Resumo:
Introduction: Vertebral fracture is one of the major osteoporotic fractures which are unfortunately very often undetected. In addition, it is well known that prevalent vertebral fracture increases dramatically the risk of future additional fracture. Instant Vertebral Assessment (IVA) has been introduced in DXA device couple years ago to ease the detection of such fracture when routine DXA are performed. To correctly use such tool, ISCD provided clinical recommendation on when and how to use it. The aim of our study was to evaluate the ISCD guidelines in clinical routine patients and see how often it may change of patient management. Methods: During two months (March and April 2010), a medical questionnaire was systematically given to our clinical routine patient to check the validity of ISCD IVA recommendations in our population. In addition, all women had BMD measurement at AP spine, Femur and 1/3 radius using a Discovery A System (Hologic, Waltham, USA). When appropriate, IVA measurement had been performed on the same DXA system and had been centrally evaluated by two trained Doctors for fracture status according to the semi-quantitative method of Genant. The reading had been performed when possible between L5 and T4. Results: Out of 210 women seen in the consultation, 109 (52%) of them (mean age 68.2 ± 11.5 years) fulfilled the necessary criteria to have an IVA measurement. Out of these 109 women, 43 (incidence 39.4%) had osteoporosis at one of the three skeletal sites and 31 (incidence 28.4%) had at least one vertebral fracture. 14.7% of women had both osteoporosis and at least one vertebral fracture classifying them as "severe osteoporosis" while 46.8% did not have osteoporosis nor vertebral fracture. 24.8% of the women had osteoporosis but no vertebral fracture while 13.8% of women did have osteoporosis and vertebral fracture (clinical osteoporosis). Conclusion: In conclusion, in 52% of our patients, IVA was needed according to ISCD criteria. In half of them the IVA test influenced of patient management either by changing the type of treatment of simply by classifying patient as "clinical osteoporosis". IVA appears to be an important tool in clinical routine but unfortunately is not yet very often used in most of the centers.
Resumo:
Vertebral fracture is one of the major osteoporotic fractures which are unfortunately very often undetected. In addition, it is well known that prevalent vertebral fracture increases dramatically the risk of future additional fracture. Instant Vertebral Assessment (IVA) has been introduced in DXA device couple years ago to ease the detection of such fracture when routine DXA are performed. To correctly use such tool, ISCD provided clinical recommendation on when and how to use it. The aim of our study was to evaluate the ISCD guidelines in clinical routine patients and see how often it may change of patient management. During two months (March and April 2010), a medical questionnaire was systematically given to our clinical routine patient to check the validity of ISCD IVA recommendations in our population. In addition, all women had BMD measurement at AP spine, Femur and 1/3 radius using a Discovery A System (Hologic, Waltham, USA). When appropriate, IVA measurement had been performed on the same DXA system and had been centrally evaluated by two trained Doctors for fracture status according to the semi-quantitative method of Genant. The reading had been performed when possible between L5 and T4. Out of 210 women seen in the consultation, 109 (52%) of them (mean age 68.2±11.5 years) fulfilled the necessary criteria to have an IVA measurement. Out of these 109 women, 43 (incidence 39.4%) had osteoporosis at one of the three skeletal sites and 31 (incidence 28.4%) had at least one vertebral fracture. 14.7% of women had both osteoporosis and at least one vertebral fracture classifying them as "severe osteoporosis" while 46.8% did not have osteoporosis not vertebral fracture. 24.8% of the women had osteoporosis but no vertebral fracture while 13.8% of women did have osteoporosis but vertebral fracture (Clinical osteoporosis). In conclusion, in 52% of our patients, IVA was needed according to ISCD criteria. In half of them the IVA test influenced of patient management either my changing the type of treatment of simply by classifying patient as "clinical osteoporosis". IVA appears to be an important tool in clinical routine but unfortunately is not yet very often use in most of the centers.
Resumo:
Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.
Resumo:
Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.
Resumo:
Purpose: SIOPEN scoring of 123I mIBG imaging has been shown to predict response to induction chemotherapy and outcome at diagnosis in children with HRN.Method: Patterns of skeletal 123I mIBG uptake were assigned numerical scores (Mscore) ranging from 0 (no metastasis) to 72 (diffuse metastases) within 12 body areas as described previously. 271 anonymised, paired image data sets acquired at diagnosis and on completion of Rapid COJEC induction chemotherapy were reviewed, constituting a representative sample of 1602 children treated prospectively within the HR-NBL1/SIOPEN trial. Pre-and post-treatment Mscores were compared with bone marrow cytology (BM) and 3 year event free survival (EFS).Results: Results 224/271 patients showed skeletal MIBG-uptake at diagnosis and were evaluable forMIBG-response. Complete response (CR) on MIBG to Rapid COJEC induction was achieved by 66%, 34% and 15% of patients who had pre-treatment Mscores of <18 (n¼65, 29%), 18-44 (n¼95,42%) and Y ´ 45 (n¼64, 28.5%) respectively (chi squared test p<.0001). Mscore at diagnosis and on completion of Rapid COJEC correlated strongly with BM involvement (p<0.0001). The correlation of pre score with post scores and response was highly significant (p<0.001). Most importantly, the 3 year EFS in 47 children with Mscore 0 at diagnosis was 0.68 (A ` 0.07), by comparison with 0.42 (A` 0.06), 0.35 (A` 0.05) and 0.25 (A` 0.06) for patients in pre-treatment score groups <18, 18-44 and Y ´ 45, respectively (p<0.001). AnMscore threshold ofY ´ 45 at diagnosis was associated with significantly worse outcome by comparison with all other Mscore groups (p¼0.029). The 3 year EFS of 0.53 (A` 0.07) of patients in metastatic CR (mIBG and BM) after Rapid Cojec (33%) is clearly superior to patients not achieving metastatic CR (0.24 (A ` 0.04), p¼0.005).Conclusion: SIOPEN scoring of 123I mIBG imaging has been shown to predict response to induction chemotherapy and outcome at diagnosis in children with HRN.
Resumo:
Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures.
Resumo:
In occupational exposure assessment of airborne contaminants, exposure levels can either be estimated through repeated measurements of the pollutant concentration in air, expert judgment or through exposure models that use information on the conditions of exposure as input. In this report, we propose an empirical hierarchical Bayesian model to unify these approaches. Prior to any measurement, the hygienist conducts an assessment to generate prior distributions of exposure determinants. Monte-Carlo samples from these distributions feed two level-2 models: a physical, two-compartment model, and a non-parametric, neural network model trained with existing exposure data. The outputs of these two models are weighted according to the expert's assessment of their relevance to yield predictive distributions of the long-term geometric mean and geometric standard deviation of the worker's exposure profile (level-1 model). Bayesian inferences are then drawn iteratively from subsequent measurements of worker exposure. Any traditional decision strategy based on a comparison with occupational exposure limits (e.g. mean exposure, exceedance strategies) can then be applied. Data on 82 workers exposed to 18 contaminants in 14 companies were used to validate the model with cross-validation techniques. A user-friendly program running the model is available upon request.
Resumo:
Objectives. The goal of this study is to evaluate a T2-mapping sequence by: (i) measuring the reproducibility intra- and inter-observer variability in healthy volunteers in two separate scanning session with a T2 reference phantom; (2) measuring the mean T2 relaxation times by T2-mapping in infarcted myocardium in patients with subacute MI and compare it with patient's the gold standard X-ray coronary angiography and healthy volunteers results. Background. Myocardial edema is a consequence of an inflammation of the tissue, as seen in myocardial infarct (MI). It can be visualized by cardiovascular magnetic resonance (CMR) imaging using the T2 relaxation time. T2-mapping is a quantitative methodology that has the potential to address the limitation of the conventional T2-weighted (T2W) imaging. Methods. The T2-mapping protocol used for all MRI scans consisted in a radial gradient echo acquisition with a lung-liver navigator for free-breathing acquisition and affine image registration. Mid-basal short axis slices were acquired.T2-maps analyses: 2 observers semi- automatically segmented the left ventricle in 6 segments accordingly to the AHA standards. 8 healthy volunteers (age: 27 ± 4 years; 62.5% male) were scanned in 2 separate sessions. 17 patients (age : 61.9 ± 13.9 years; 82.4% male) with subacute STEMI (70.6%) and NSTEMI underwent a T2-mapping scanning session. Results. In healthy volunteers, the mean inter- and intra-observer variability over the entire short axis slice (segment 1 to 6) was 0.1 ms (95% confidence interval (CI): -0.4 to 0.5, p = 0.62) and 0.2 ms (95% CI: -2.8 to 3.2, p = 0.94, respectively. T2 relaxation time measurements with and without the correction of the phantom yielded an average difference of 3.0 ± 1.1 % and 3.1 ± 2.1 % (p = 0.828), respectively. In patients, the inter-observer variability in the entire short axis slice (S1-S6), was 0.3 ms (95% CI: -1.8 to 2.4, p = 0.85). Edema location as determined through the T2-mapping and the coronary artery occlusion as determined on X-ray coronary angiography correlated in 78.6%, but only in 60% in apical infarcts. All except one of the maximal T2 values in infarct patients were greater than the upper limit of the 95% confidence interval for normal myocardium. Conclusions. The T2-mapping methodology is accurate in detecting infarcted, i.e. edematous tissue in patients with subacute infarcts. This study further demonstrated that this T2-mapping technique is reproducible and robust enough to be used on a segmental basis for edema detection without the need of a phantom to yield a T2 correction factor. This new quantitative T2-mapping technique is promising and is likely to allow for serial follow-up studies in patients to improve our knowledge on infarct pathophysiology, on infarct healing, and for the assessment of novel treatment strategies for acute infarctions.
Resumo:
A semisupervised support vector machine is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictions.
Resumo:
Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures.
Resumo:
The physical disector is a method of choice for estimating unbiased neuron numbers; nevertheless, calibration is needed to evaluate each counting method. The validity of this method can be assessed by comparing the estimated cell number with the true number determined by a direct counting method in serial sections. We reconstructed a 1/5 of rat lumbar dorsal root ganglia taken from two experimental conditions. From each ganglion, images of 200 adjacent semi-thin sections were used to reconstruct a volumetric dataset (stack of voxels). On these stacks the number of sensory neurons was estimated and counted respectively by physical disector and direct counting methods. Also, using the coordinates of nuclei from the direct counting, we simulate, by a Matlab program, disector pairs separated by increasing distances in a ganglion model. The comparison between the results of these approaches clearly demonstrates that the physical disector method provides a valid and reliable estimate of the number of sensory neurons only when the distance between the consecutive disector pairs is 60 microm or smaller. In these conditions the size of error between the results of physical disector and direct counting does not exceed 6%. In contrast when the distance between two pairs is larger than 60 microm (70-200 microm) the size of error increases rapidly to 27%. We conclude that the physical dissector method provides a reliable estimate of the number of rat sensory neurons only when the separating distance between the consecutive dissector pairs is no larger than 60 microm.
Resumo:
Background: b-value is the parameter characterizing the intensity of the diffusion weighting during image acquisition. Data acquisition is usually performed with low b value (b~1000 s/mm2). Evidence shows that high b-values (b>2000 s/mm2) are more sensitive to the slow diffusion compartment (SDC) and maybe more sensitive in detecting white matter (WM) anomalies in schizophrenia.Methods: 12 male patients with schizophrenia (mean age 35 +/-3 years) and 16 healthy male controls matched for age were scanned with a low b-value (1000 s/mm2) and a high b-value (4000 s/mm2) protocol. Apparent diffusion coefficient (ADC) is a measure of the average diffusion distance of water molecules per time unit (mm2/s). ADC maps were generated for all individuals. 8 region of interests (frontal and parietal region bilaterally, centrum semi-ovale bilaterally and anterior and posterior corpus callosum) were manually traced blind to diagnosis.Results: ADC measures acquired with high b-value imaging were more sensitive in detecting differences between schizophrenia patients and healthy controls than low b-value imaging with a gain in significance by a factor of 20- 100 times despite the lower image Signal-to-noise ratio (SNR). Increased ADC was identified in patient's WM (p=0.00015) with major contributions from left and right centrum semi-ovale and to a lesser extent right parietal region.Conclusions: Our results may be related to the sensitivity of high b-value imaging to the SDC believed to reflect mainly the intra-axonal and myelin bound water pool. High b-value imaging might be more sensitive and specific to WM anomalies in schizophrenia than low b-value imaging
Resumo:
There are many known examples of multiple semi-independent associations at individual loci; such associations might arise either because of true allelic heterogeneity or because of imperfect tagging of an unobserved causal variant. This phenomenon is of great importance in monogenic traits but has not yet been systematically investigated and quantified in complex-trait genome-wide association studies (GWASs). Here, we describe a multi-SNP association method that estimates the effect of loci harboring multiple association signals by using GWAS summary statistics. Applying the method to a large anthropometric GWAS meta-analysis (from the Genetic Investigation of Anthropometric Traits consortium study), we show that for height, body mass index (BMI), and waist-to-hip ratio (WHR), 3%, 2%, and 1%, respectively, of additional phenotypic variance can be explained on top of the previously reported 10% (height), 1.5% (BMI), and 1% (WHR). The method also permitted a substantial increase (by up to 50%) in the number of loci that replicate in a discovery-validation design. Specifically, we identified 74 loci at which the multi-SNP, a linear combination of SNPs, explains significantly more variance than does the best individual SNP. A detailed analysis of multi-SNPs shows that most of the additional variability explained is derived from SNPs that are not in linkage disequilibrium with the lead SNP, suggesting a major contribution of allelic heterogeneity to the missing heritability.
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.
Resumo:
Due to the existence of free software and pedagogical guides, the use of Data Envelopment Analysis (DEA) has been further democratized in recent years. Nowadays, it is quite usual for practitioners and decision makers with no or little knowledge in operational research to run their own efficiency analysis. Within DEA, several alternative models allow for an environmental adjustment. Four alternative models, each user-friendly and easily accessible to practitioners and decision makers, are performed using empirical data of 90 primary schools in the State of Geneva, Switzerland. Results show that the majority of alternative models deliver divergent results. From a political and a managerial standpoint, these diverging results could lead to potentially ineffective decisions. As no consensus emerges on the best model to use, practitioners and decision makers may be tempted to select the model that is right for them, in other words, the model that best reflects their own preferences. Further studies should investigate how an appropriate multi-criteria decision analysis method could help decision makers to select the right model.