72 resultados para PATHOGENIC MICROORGANISMS
em Université de Lausanne, Switzerland
Resumo:
The complex ecology of free-living amoebae (FLA) and their role in spreading pathogenic microorganisms through water systems have recently raised considerable interest. In this study, we investigated the presence of FLA and amoebae-resisting bacteria (ARB) at various stages of a drinking water plant fed with river water. We isolated various amoebal species from the river and from several points within the plant, mostly at early steps of water treatment. Echinamoeba- and Hartmannella-related amoebae were mainly recovered in the drinking water plant whereas Acanthamoeba- and Naegleria-related amoebae were recovered from the river water and the sand filtration units. Some FLA isolates were recovered immediately after the ozonation step, thus suggesting resistance of these microorganisms to this disinfection procedure. A bacterial isolate related to Mycobacterium mucogenicum was recovered from an Echinamoeba-related amoeba isolated from ozone-treated water. Various other ARB were recovered using co-culture with axenic Acanthamoeba castellanii, including mycobacteria, legionella, Chlamydia-like organisms and various proteobacteria. Noteworthy, a new Parachlamydia acanthamoebae strain was recovered from river water and from granular activated carbon (GAC) biofilm. As amoebae mainly multiply in sand and GAC filters, optimization of filter backwash procedures probably offers a possibility to better control these protists and the risk associated with their intracellular hosts
Resumo:
Mucosal surfaces represent the main sites of interaction with environmental microorganisms and antigens. Sentinel cells, including epithelial cells and dendritic cells (DCs), continuously sense the environment and coordinate defenses for the protection of mucosal tissues. DCs play a central role in the control of adaptive immune responses owing to their capacity to internalize foreign materials, to migrate into lymph nodes and to present antigens to naive lymphocytes. Some pathogenic microorganisms trigger epithelial responses that result in the recruitment of DCs. These pathogens hijack the recruited DCs to enable them to infect the host, escape the host's defense mechanisms and establish niches at remote sites.
Resumo:
Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships with immunity and intestinal homeostasis.
Resumo:
Résumé Les agents pathogènes responsables d'infection entraînent chez l'hôte deux types de réponses immunes, la première, non spécifique, dite immunité innée, la seconde, spécifique à l'agent concerné, dite immunité adaptative. L'immunité innée, qui représente la première ligne de défense contre les pathogènes, est liée à la reconnaissance par les cellules de l'hôte de structures moléculaires propres aux micro-organismes (« Pathogen-Associated Molecular Patterns », PAMPs), grâce à des récepteurs membranaires et cytoplasmiques (« Pattern Recognition Receptors », PRRs) identifiant de manière spécifique ces motifs moléculaires. Les récepteurs membranaires impliqués dans ce processus sont dénommés toll-like récepteurs, ou TLRS. Lorsqu'ils sont activés par leur ligand spécifique, ces récepteurs activent des voies de signalisation intracellulaires initiant la réponse inflammatoire non spécifique et visant à éradiquer l'agent pathogène. Les deux voies de signalisation impliquées dans ce processus sont la voie des « Mitogen-Activated Protein Kinases » (MAPKs) et celle du « Nuclear Factor kappaB » (NF-κB), dont l'activation entraîne in fine l'expression de protéines de l'inflammation dénommées cytokines, ainsi que certaines enzymes produisant divers autres médiateurs inflammatoires. Dans certaines situations, cette réponse immune peut être amplifiée de manière inadéquate, entraînant chez l'hôte une réaction inflammatoire systémique exagérée, appelée sepsis. Le sepsis peut se compliquer de dysfonctions d'organes multiples (sepsis sévère), et dans sa forme la plus grave, d'un collapsus cardiovasculaire, définissant le choc septique. La défaillance circulatoire du choc septique touche les vaisseaux sanguins d'une part, le coeur d'autre part, réalisant un tableau de «dysfonction cardiaque septique », dont on connaît mal les mécanismes pathogéniques. Les bactéries à Gram négatif peuvent déclencher de tels phénomènes, notamment en libérant de l'endotoxine, qui active les voies de l'immunité innée par son interaction avec un toll récepteur, le TLR4. Outre l'endotoxine, la plupart des bactéries à Gram négatif relâchent également dans leur environnement une protéine, la flagelline, qui est le constituant majeur du flagelle bactérien, organelle assurant la mobilité de ces micro-organismes. Des données récentes ont indiqué que la flagelline active, dans certaines cellules, les voies de l'immunité innée en se liant au récepteur TLRS. On ne connaît toutefois pas les conséquences de l'interaction flagelline-TLRS sur le développement de l'inflammation et des dysfonctions d'organes au cours du sepsis. Nous avons par conséquent élaboré le présent travail en formulant l'hypothèse que la flagelline pourrait déclencher une telle inflammation et représenter ainsi un médiateur potentiel de la dysfonction d'organes au cours du sepsis à Gram négatif, en nous intéressant plus particulièrement àl'inflammation et à la dysfonction cardiaque. Dans la première partie de ce travail, nous avons étudié les effets de la flagelline sur l'activation du NF-κB et des MAPKs, et sur l'expression de cytokines inflammatoires au niveau du myocarde in vitro (cardiomyocytes en culture) et in vivo (injection de flagelline recombinante à des souris). Nous avons observé tout d'abord que le récepteur TLRS est fortement exprimé au niveau du myocarde. Nous avons ensuite démontré que la flagelline active la voie du NF-κB et des MAP kinases (p38 et JNK), stimule la production de cytokines et de chemokines inflammatoires in vitro et in vivo, et entraîne l'activation de polynucléaires neutrophiles dans le tissu cardiaque in vivo. Finalement, au plan fonctionnel, nous avons pu montrer que la flagelline entraîne une dilatation et une réduction aiguë de la contractilité du ventricule gauche chez la souris, reproduisant les caractéristiques de la dysfonction cardiaque septique. Dans la deuxième partie, nous avons déterminé la distribution du récepteur TLRS dans les autres organes majeurs de la souris (poumon, foie, intestin et rein}, et avons caractérisé dans ces organes l'effet de la flagelline sur l'activation du NF-κB et des MAPKs, l'expression de cytokines, et l'induction de l'apoptose. Nous avons démontré que le TLRS est exprimé de façon constitutive dans ces organes, et que l'injection de flagelline y déclenche les cascades de l'immunité innée et de processus apoptotiques. Finalement, nous avons également déterminé que la flagelline entraîne une augmentation significative de multiples cytokines dans le plasma une à six heures après son injection. En résumé, nos données démontrent que la flagelline bactérienne (a) entraîne une inflammation et une dysfonction importantes du myocarde et (b) active de manière très significative les mécanismes d'immunité innée dans les principaux organes et entraîne une réponse inflammatoire systémique. Par conséquent, la flagelline peut représenter un médiateur puissant de l'inflammation et de la dysfonction d'organes, notamment du coeur, au cours du choc septique déclenché par les bactéries à Gram négatif. Summary Pathogenic microorganisms trigger two kinds of immune responses in the host. The first one is immediate and non-specific and is termed innate immunity, whereas the second one, specifically targeted at the invading agent, is termed adaptative immunity. Innate immunity, which represents the first line of defense against invading pathogens, confers the host the ability to recognize molecular structures common to many microbial pathogens, ("Pathogen-Associated Molecular Patterns", PAMPs), through cytosolic or membrane-associated receptors ("Pattern Recognition Receptors", PRRs), the latter being represented by a family of receptors termed "toll-like receptors or TLRs". Once activated by the binding of their specific ligand, these receptors activate intracellular signaling pathways, which initiate the non-specific inflammatory response aimed at eradicating the pathogens. The two pathways implicated in this process are the mitogen-activated protein kinases (MAPK) and the nuclear factor kappa B (NF-κB) signaling pathways, whose activation elicit in fine the expression of inflammatory proteins termed cytokines, as well as various enzymes producing a wealth of additional inflammatory mediators. In some circumstances, the innate immune response can become amplified and dysregulated, triggering an overwhelming systemic inflammatory response in the host, identified as sepsis. Sepsis can be associated with multiple organ dysfunction (severe sepsis), and in its most severe form, with cardiovascular collapse, defming septic shock. The cardiovascular failure associated with septic shock affects blood vessels as well as the heart, resulting in a particular form of acute heart failure termed "septic cardiac dysfunction ", whose pathogenic mechanisms remain partly undefined. Gram-negative bacteria can initiate such phenomena, notably by releasing lipopolysaccharide (LPS), which activates innate immune signaling by interacting with its specific toll receptor, the TLR4. Besides LPS, most Gram-negative bacteria also release flagellin into their environment, which is the main structural protein of the bacterial flagellum, an appendage extending from the outer bacterial membrane, responsible for the motility of the microorganism. Recent data indicated that flagellin activate immune responses upon binding to its receptor, TLRS, in various cell types. However, the role of flagellin/TLRS interaction in the development of inflammation and organ dysfunction during sepsis is not known. Therefore, we designed the present work to address the hypothesis that flagellin might trigger such inflammatory responses and thus represent a potential mediator of organ dysfunction during Gram-negative sepsis, with a particular emphasis on cardiac inflammation and contractile dysfunction. In the first part of this work, we investigated the effects of flagellin on NF-κB and MAPK activation and the generation of pro-inflammatory mediators within the heart in vitro (cultured cardiomyocytes) and in vivo (injection of recombinant flagellin into mice). We first observed that TLRS protein is strongly expressed by the myocardium. We then demonstrated that flagellin activates NF-κB and MAP kinases (p38 and JNK), upregulates the transcription of pro-inflammatory cytokines and chemokines in vitro and in vivo, and stimulates the activation of polymorphonuclear neutrophils within the heart in vivo. Finally, we demonstrated that flagellin triggers acute cardiac dilation, and a significant reduction of left ventricular contractility, mimicking characteristics of clinical septic cardiac dysfunction. In the second part, we determined the TLRS distribution in other mice major organs (lung, liver, gut and kidney) and we characterized in these organs the effects of flagellin on NF-κB and MAPK activation, on the expression of pro-inflammatory çytokines, and on the induction of apoptosis. We demonstrated that TLRS protein is constitutively expressed and that flagellin activates prototypical innate immune responses and pro-apoptotic pathways in all these organs. Finally, we also observed that flagellin induces a significant increase of multiple cytokines in the plasma from 1 to 6 hours after its intravenous administration. Altogether, these data provide evidence that bacterial flagellin (a) triggers an important inflammatory response and an acute dysfunction of the myocardium, and (b) significantly activates the mechanisms of innate immunity in most major organs and elicits a systemic inflammatory response. In consequence, flagellin may represent a potent mediator of inflammation and multiple organ failure, notably cardiac dysfunction, during Gram-negative septic shock.
Resumo:
An important activity of mucosal surfaces is the production of antibodies (Abs) referred to as secretory immunoglobulin A (SIgA) that serve as a first line of defense to repel pathogenic microorganisms and provide a finely tuned balance to guarantee controlled survival of essential commensal bacteria. By excluding bacteria from the epithelial cell, SIgA participates in the cross-talk between the host and its intestinal content, ensuring appropriate homeostasis under normal conditions. Besides the classical view of immune exclusion function, SIgA Abs exhibit the striking feature to adhere to gastrointestinal M cells residing in the follicle-associated epithelium in organized structures called Peyer's patches. Selective binding of SIgA results in transport across the microfold (M) cells, a process that facilitates the association of the Ab with dendritic cells (DCs) located in the underlying subepithelial dome region of Peyer's patches. Limited entry of free SIgA and SIgA-coated bacteria via this pathway is crucial to the modulation of local immune responses in an environment that limits the onset of pro-inflammatory circuits. Such a mechanism would ensure homeostasis by allowing antigen recognition under neutralized conditions and by avoiding tissue dissemination, two features that endow SIgA with non-inflammatory properties in the mucosal environment.
Resumo:
Rhizobacteria-induced systemic resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) have a broad, yet partly distinct, range of effectiveness against pathogenic microorganisms. Here, we investigated the effectiveness of ISR and SAR in Arabidopsis against the tissue-chewing insects Pieris rapae and Spodoptera exigua. Resistance against insects consists of direct defense, such as the production of toxins and feeding deterrents and indirect defense such as the production of plant volatiles that attract carnivorous enemies of the herbivores. Wind-tunnel experiments revealed that ISR and SAR did not affect herbivore-induced attraction of the parasitic wasp Cotesia rubecula (indirect defense). By contrast, ISR and SAR significantly reduced growth and development of the generalist herbivore S. exigua, although not that of the specialist P. rapae. This enhanced direct defense against S. exigua was associated with potentiated expression of the defense-related genes PDF1.2 and HEL. Expression profiling using a dedicated cDNA microarray revealed four additional, differentially primed genes in microbially induced S. exigua-challenged plants, three of which encode a lipid-transfer protein. Together, these results indicate that microbially induced plants are differentially primed for enhanced insect-responsive gene expression that is associated with increased direct defense against the generalist S. exigua but not against the specialist P. rapae.
Resumo:
Most fishes produce free-living embryos that are exposed to environmental stressors immediately following fertilization, including pathogenic microorganisms. Initial immune protection of embryos involves the chorion, as a protective barrier, and maternally-allocated antimicrobial compounds. At later developmental stages, host-genetic effects influence susceptibility and tolerance, suggesting a direct interaction between embryo genes and pathogens. So far, only a few host genes could be identified that correlate with embryonic survival under pathogen stress in salmonids. Here, we utilized high-throughput RNA-sequencing in order to describe the transcriptional response of a non-model fish, the Alpine whitefish Coregonus palaea, to infection, both in terms of host genes that are likely manipulated by the pathogen, and those involved in an early putative immune response. Embryos were produced in vitro, raised individually, and exposed at the late-eyed stage to a virulent strain of the opportunistic fish pathogen Pseudomonas fluorescens. The pseudomonad increased embryonic mortality and affected gene expression substantially. For example, essential, upregulated metabolic pathways in embryos under pathogen stress included ion binding pathways, aminoacyl-tRNA-biosynthesis, and the production of arginine and proline, most probably mediated by the pathogen for its proliferation. Most prominently downregulated transcripts comprised the biosynthesis of unsaturated fatty acids, the citrate cycle, and various isoforms of b-cell transcription factors. These factors have been shown to play a significant role in host blood cell differentiation and renewal. With regard to specific immune functions, differentially expressed transcripts mapped to the complement cascade, MHC class I and II, TNF-alpha, and T-cell differentiation proteins. The results of this study reveal insights into how P. fluorescens impairs the development of whitefish embryos and set a foundation for future studies investigating host pathogen interactions in fish embryos.
Resumo:
The increase in seafood production, especially in mariculture worldwide, has brought out the need of continued monitoring of shellfish production areas in order to ensure safety to human consumption. The purpose of this research was to evaluate pathogenic protozoa, viruses and bacteria contamination in oysters before and after UV depuration procedure, in brackish waters at all stages of cultivation and treatment steps and to enumerate microbiological indicators of fecal contamination from production site up to depuration site in an oyster cooperative located at the Southeastern estuarine area of Brazil. Oysters and brackish water were collected monthly from September 2009 to November 2010. Four sampling sites were selected for enteropathogens analysis: site 1- oyster growth, site 2- catchment water (before UV depuration procedure), site 3 - filtration stage of water treatment (only for protozoa analysis) and site 4- oyster's depuration tank. Three microbiological indicators ! were examined at sites 1, 2 and 4. The following pathogenic microorganisms were searched: Giardia cysts, Cryptosporidium oocysts, Human Adenovirus (HAdV), Hepatitis A virus (HAV), Human Norovirus (HnoV) (genogroups I and II), JC strain Polyomavirus (JCPyV) and Salmonella sp. Analysis consisted of molecular detection (qPCR) for viruses (oysters and water samples); immunomagnetic separation followed by direct immunofluorescence assay for Cryptosporidium oocysts and Giardia cysts and also molecular detection (PCR) for the latter (oysters and water samples); commercial kit (Reveal-Neogee (R)) for Salmonella analysis (oysters). Giardia was the most prevalent pathogen in all sites where it was detected: 36.3%, 18.1%, 36.3% and 27.2% of water from sites 1, 2, 3 and 4 respectively; 36.3% of oysters from site 1 and 54.5% of depurated oysters were harboring Giardia cysts. The huge majority of contaminated samples were classified as Giardia duodenalis. HAdv was detected in water and o! ysters from growth site and HnoV GI in two batches of oysters ! (site 1) in huge concentrations (2.11 x 10(13), 3.10 x 10(12) gc/g). In depuration tank site, Salmonella sp., HAV (4.84 x 10(3)) and HnoV GII (7.97 x 10(14)) were detected once in different batches of oysters. Cryptosporidium spp. oocysts were present in 9.0% of water samples from site four. These results reflect the contamination of oysters even when UV depuration procedures are employed in this shellfish treatment plant. Moreover, the molecular comprehension of the sources of contamination is necessary to develop an efficient management strategy allied to shellfish treatment improvement to prevent foodborne illnesses. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Dermatophytes are highly specialized filamentous fungi which cause the majority of superficial mycoses in humans and animals. The high secreted proteolytic activity of these microorganisms during growth on proteins is assumed to be linked to their particular ability to exclusively infect keratinized host structures such as the skin stratum corneum, hair, and nails. Individual secreted dermatophyte proteases were recently described and linked with the in vitro digestion of keratin. However, the overall adaptation and transcriptional response of dermatophytes during protein degradation are largely unknown. To address this question, we constructed a cDNA microarray for the human pathogenic dermatophyte Trichophyton rubrum that was based on transcripts of the fungus grown on proteins. Profiles of gene expression during the growth of T. rubrum on soy and keratin protein displayed the activation of a large set of genes that encode secreted endo- and exoproteases. In addition, other specifically induced factors potentially implicated in protein utilization were identified, including heat shock proteins, transporters, metabolic enzymes, transcription factors, and hypothetical proteins with unknown functions. Of particular interest is the strong upregulation of key enzymes of the glyoxylate cycle in T. rubrum during growth on soy and keratin, namely, isocitrate lyase and malate synthase. This broad-scale transcriptional analysis of dermatophytes during growth on proteins reveals new putative pathogenicity-related host adaptation mechanisms of these human pathogenic fungi.
Resumo:
Objectives: Dermatophytes are highly specialized fungi which are the most common agents of superficial mycoses in humans and animals. The particular ability of these microorganisms to invade and multiply within keratinized host structures is presumably linked to their secreted keratinolytic activity, which is therefore a major putative virulence attribute of these fungi. The overall adaptation and transcriptional response of dermatophytes during protein degradation and/or infection is largely unknown. Methods: A Trichophyton rubrum cDNA microarray was developed and used for the transcriptional analysis of T. rubrum and Arthroderma benhamiae cells during growth on protein substrates. Moreover, the gene expression profile in A. benhamiae cells was monitored during infection of guinea pigs. Results: T. rubrum and A. benhamiae cells activate a large set of genes encoding secreted endo- and exoproteases during growth on soy and keratin. In addition, other specifically induced factors with potential implication in protein utilization were identified, e.g. multiple transporters, metabolic enzymes, transcription factors and hypothetical proteins with unknown function. Notably however, the protease gene expression profile in the fungal cells during infection was significantly different from the pattern elicited during in vitro growth on keratin. Conclusions: Our results suggest specific functions of individual proteases during infection, which may not be restricted to the degradation of keratin. This first, broad in vivo transcriptional profiling approach in dermatophytes gives new molecular insights into pathogenicity associated adaptation mechanisms that make these microorganisms the most successful causitive agents of superficial mycoses.
Resumo:
Free-living amoebae are distributed worldwide and are frequently in contact with humans and animals. As cysts, they can survive in very harsh conditions and resist biocides and most disinfection procedures. Several microorganisms, called amoeba-resisting microorganisms (ARMs), have evolved to survive and multiply within these protozoa. Among them are many important pathogens, such as Legionella and Mycobacteria, and also several newly discovered Chlamydia-related bacteria, such as Parachlamydia acanthamoebae, Estrella lausannensis, Simkania negevensis or Waddlia chondrophila whose pathogenic role towards human or animal is strongly suspected. Amoebae represent an evolutionary crib for their resistant microorganisms since they can exchange genetic material with other ARMs and develop virulence traits that will be further used to infect other professional phagocytes. Moreover, amoebae constitute an ideal tool to isolate strict intracellular microorganisms from complex microbiota, since they will feed on other fast-growing bacteria, such as coliforms potentially present in the investigated samples. The paradigm that ARMs are likely resistant to macrophages, another phagocytic cell, and that they are likely virulent towards humans and animals is only partially true. Indeed, we provide examples of the Chlamydiales order that challenge this assumption and suggest that the ability to multiply in protozoa does not strictly correlate with pathogenicity and that we should rather use the ability to replicate in multiple and diverse eukaryotic cells as an indirect marker of virulence towards mammals. Thus, cell-culture-based microbial culturomics should be used in the future to try to discover new pathogenic bacterial species.
Resumo:
Experimental leishmaniasis offers a well characterized model of T helper type 1 cell (Th1)-mediated control of infection by an intracellular organism. Susceptible BALB/c mice aberrantly develop Th2 cells in response to infection and are unable to control parasite dissemination. The early CD4(+) T cell response in these mice is oligoclonal and reflects the expansion of Vbeta4/ Valpha8-bearing T cells in response to a single epitope from the parasite Leishmania homologue of mammalian RACK1 (LACK) antigen. Interleukin 4 (IL-4) generated by these cells is believed to direct the subsequent Th2 response. We used T cells from T cell receptor-transgenic mice expressing such a Vbeta4/Valpha8 receptor to characterize altered peptide ligands with similar affinity for I-Ad. Such altered ligands failed to activate IL-4 production from transgenic LACK-specific T cells or following injection into BALB/c mice. Pretreatment of susceptible mice with altered peptide ligands substantially altered the course of subsequent infection. The ability to confer a healer phenotype on otherwise susceptible mice using altered peptides that differed by a single amino acid suggests limited diversity in the endogenous T cell repertoire recognizing this antigen.
Resumo:
Because Staphylococcus aureus strains contain multiple virulence factors, studying their pathogenic role by single-gene inactivation generated equivocal results. To circumvent this problem, we have expressed specific S. aureus genes in the less virulent organism Streptococcus gordonii and tested the recombinants for a gain of function both in vitro and in vivo. Clumping factor A (ClfA) and coagulase were investigated. Both gene products were expressed functionally and with similar kinetics during growth by streptococci and staphylococci. ClfA-positive S. gordonii was more adherent to platelet-fibrin clots mimicking cardiac vegetations in vitro and more infective in rats with experimental endocarditis (P < 0.05). Moreover, deleting clfA from clfA-positive streptococcal transformants restored both the low in vitro adherence and the low in vivo infectivity of the parent. Coagulase-positive transformants, on the other hand, were neither more adherent nor more infective than the parent. Furthermore, coagulase did not increase the pathogenicity of clfA-positive streptococci when both clfA and coa genes were simultaneously expressed in an artificial minioperon in streptococci. These results definitively attribute a role for ClfA, but not coagulase, in S. aureus endovascular infections. This gain-of-function strategy might help solve the role of individual factors in the complex the S. aureus-host relationship.
Resumo:
Superantigens (SAgs) are microbial proteins which have potent effects on the immune system. They are presented by major histocompatibility complex (MHC) class II molecules and interact with a large number of T cells expressing specific T cell receptor V beta domains. Encounter of a SAg leads initially to the stimulation and subsequently to the clonal deletion of reactive T cells. SAgs are expressed by a wide variety of microorganisms which use them to exploit the immune system to their own advantage. Bacterial SAgs are exotoxins which are linked to several diseases in humans and animals. A classical example is the toxic shock syndrome in which the massive release of cytokines by SAg-reactive cells is thought to play a major pathogenic role. The best characterized viral SAg is encoded by mouse mammary tumour virus (MMTV) and has proved to have a major influence on the viral life cycle by dramatically increasing the efficiency of viral infection. In this paper, we review the general properties of SAgs and discuss the different types of microorganisms which produce these molecules, with a particular emphasis on the role played by the SAg-induced immune response in the course of microbial infections.
Resumo:
BACKGROUND: Food allergy is a common allergic disorder--especially in early childhood. The avoidance of the allergenic food is the only available method to prevent further reactions in sensitized patients. A better understanding of the immunologic mechanisms involved in this reaction would help to develop therapeutic approaches applicable to the prevention of food allergy. OBJECTIVE: To establish a multi-cell in vitro model of sensitized intestinal epithelium that mimics the intestinal epithelial barrier to study the capacity of probiotic microorganisms to modulate permeability, translocation and immunoreactivity of ovalbumin (OVA) used as a model antigen. METHODS: Polarized Caco-2 cell monolayers were conditioned by basolateral basophils and used to examine apical to basolateral transport of OVA by ELISA. Activation of basophils with translocated OVA was measured by beta-hexosaminidase release assay. This experimental setting was used to assess how microorganisms added apically affected these parameters. Basolateral secretion of cytokine/chemokines by polarized Caco-2 cell monolayers was analysed by ELISA. RESULTS: Basophils loaded with OVA-specific IgE responded to OVA in a dose-dependent manner. OVA transported across polarized Caco-2 cell monolayers was found to trigger basolateral basophil activation. Microorganisms including lactobacilli and Escherichia coli increased transepithelial electrical resistance while promoting OVA passage capable to trigger basophil activation. Non-inflammatory levels of IL-8 and thymic stromal lymphopoietin were produced basolaterally by Caco-2 cells exposed to microorganisms. CONCLUSION: The complex model designed in here is adequate to learn about the consequence of the interaction between microorganisms and epithelial cells vis-a-vis the barrier function and antigen translocation, two parameters essential to mucosal homeostasis. It can further serve as a direct tool to search for microorganisms with anti-allergic and anti-inflammatory properties.