31 resultados para PARTICLE-MESH EWALD
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVE: : To determine the influence of nebulizer types and nebulization modes on bronchodilator delivery in a mechanically ventilated pediatric lung model. DESIGN: : In vitro, laboratory study. SETTING: : Research laboratory of a university hospital. INTERVENTIONS: : Using albuterol as a marker, three nebulizer types (jet nebulizer, ultrasonic nebulizer, and vibrating-mesh nebulizer) were tested in three nebulization modes in a nonhumidified bench model mimicking the ventilatory pattern of a 10-kg infant. The amounts of albuterol deposited on the inspiratory filters (inhaled drug) at the end of the endotracheal tube, on the expiratory filters, and remaining in the nebulizers or in the ventilator circuit were determined. Particle size distribution of the nebulizers was also measured. MEASUREMENTS AND MAIN RESULTS: : The inhaled drug was 2.8% ± 0.5% for the jet nebulizer, 10.5% ± 2.3% for the ultrasonic nebulizer, and 5.4% ± 2.7% for the vibrating-mesh nebulizer in intermittent nebulization during the inspiratory phase (p < 0.01). The most efficient nebulizer was the vibrating-mesh nebulizer in continuous nebulization (13.3% ± 4.6%, p < 0.01). Depending on the nebulizers, a variable but important part of albuterol was observed as remaining in the nebulizers (jet and ultrasonic nebulizers), or being expired or lost in the ventilator circuit (all nebulizers). Only small particles (range 2.39-2.70 µm) reached the end of the endotracheal tube. CONCLUSIONS: : Important differences between nebulizer types and nebulization modes were seen for albuterol deposition at the end of the endotracheal tube in an in vitro pediatric ventilator-lung model. New aerosol devices, such as ultrasonic and vibrating-mesh nebulizers, were more efficient than the jet nebulizer.
Resumo:
BACKGROUND: Highway maintenance workers are constantly and simultaneously exposed to traffic-related particle and noise emissions, and both have been linked to increased cardiovascular morbidity and mortality in population-based epidemiology studies. OBJECTIVES: We aimed to investigate short-term health effects related to particle and noise exposure. METHODS: We monitored 18 maintenance workers, during as many as five 24-hour periods from a total of 50 observation days. We measured their exposure to fine particulate matter (PM2.5), ultrafine particles, noise, and the cardiopulmonary health endpoints: blood pressure, pro-inflammatory and pro-thrombotic markers in the blood, lung function and fractional exhaled nitric oxide (FeNO) measured approximately 15 hours post-work. Heart rate variability was assessed during a sleep period approximately 10 hours post-work. RESULTS: PM2.5 exposure was significantly associated with C-reactive protein and serum amyloid A, and negatively associated with tumor necrosis factor α. None of the particle metrics were significantly associated with von Willebrand factor or tissue factor expression. PM2.5 and work noise were associated with markers of increased heart rate variability, and with increased HF and LF power. Systolic and diastolic blood pressure on the following morning were significantly associated with noise exposure after work, and non-significantly associated with PM2.5. We observed no significant associations between any of the exposures and lung function or FeNO. CONCLUSIONS: Our findings suggest that exposure to particles and noise during highway maintenance work might pose a cardiovascular health risk. Actions to reduce these exposures could lead to better health for this population of workers.
Resumo:
Fibrin sealing has recently evolved as a new technique for mesh fixation in endoscopic inguinal hernia repair. A comprehensive Medline search was carried out evaluating fibrin sealant for mesh fixation, and finally 12 studies were included (3 randomized trials, 3 nonrandomized trials, and 6 case series). The trials were assessed for operative time, seroma formation, recovery time, recurrence rate, and acute and chronic pain.There was a trend toward decreased operative times for fibrin sealing compared with mechanical stapling; however, the results for seroma formation remained contradictory. The most important finding was the reduced postoperative pain. Recovery times were lower after fibrin sealing and the recurrence rates showed no differences.Fibrin sealing for mesh fixation in the endoscopic inguinal hernia surgery is a promising alternative to mechanical stapling, which can be safely applied. As the overall quality of published data remains poor, further well-designed studies are needed until fibrin sealing can replace mechanical stapling as a new standard for mesh fixation.
Resumo:
We investigated the use of in situ implant formation that incorporates superparamagnetic iron oxide nanoparticles (SPIONs) as a form of minimally invasive treatment of cancer lesions by magnetically induced local hyperthermia. We developed injectable formulations that form gels entrapping magnetic particles into a tumor. We used SPIONs embedded in silica microparticles to favor syringeability and incorporated the highest proportion possible to allow large heating capacities. Hydrogel, single-solvent organogel and cosolvent (low-toxicity hydrophilic solvent) organogel formulations were injected into human cancer tumors xenografted in mice. The thermoreversible hydrogels (poloxamer, chitosan), which accommodated 20% w/v of the magnetic microparticles, proved to be inadequate. Alginate hydrogels, however, incorporated 10% w/v of the magnetic microparticles, and the external gelation led to strong implants localizing to the tumor periphery, whereas internal gelation failed in situ. The organogel formulations, which consisted of precipitating polymers dissolved in single organic solvents, displayed various microstructures. A 8% poly(ethylene-vinyl alcohol) in DMSO containing 40% w/v of magnetic microparticles formed the most suitable implants in terms of tumor casting and heat delivery. Importantly, it is of great clinical interest to develop cosolvent formulations with up to 20% w/v of magnetic microparticles that show reduced toxicity and centered tumor implantation.
Resumo:
BACKGROUND: Advances in nebulizer design have produced both ultrasonic nebulizers and devices based on a vibrating mesh (vibrating mesh nebulizers), which are expected to enhance the efficiency of aerosol drug therapy. The aim of this study was to compare 4 different nebulizers, of 3 different types, in an in vitro model using albuterol delivery and physical characteristics as benchmarks. METHODS: The following nebulizers were tested: Sidestream Disposable jet nebulizer, Multisonic Infra Control ultrasonic nebulizer, and the Aerogen Pro and Aerogen Solo vibrating mesh nebulizers. Aerosol duration, temperature, and drug solution osmolality were measured during nebulization. Albuterol delivery was measured by a high-performance liquid chromatography system with fluorometric detection. The droplet size distribution was analyzed with a laser granulometer. RESULTS: The ultrasonic nebulizer was the fastest device based on the duration of nebulization; the jet nebulizer was the slowest. Solution temperature decreased during nebulization when the jet nebulizer and vibrating mesh nebulizers were used, but it increased with the ultrasonic nebulizer. Osmolality was stable during nebulization with the vibrating mesh nebulizers, but increased with the jet nebulizer and ultrasonic nebulizer, indicating solvent evaporation. Albuterol delivery was 1.6 and 2.3 times higher with the ultrasonic nebulizer and vibrating mesh nebulizers devices, respectively, than with the jet nebulizer. Particle size was significantly higher with the ultrasonic nebulizer. CONCLUSIONS: The in vitro model was effective for comparing nebulizer types, demonstrating important differences between nebulizer types. The new devices, both the ultrasonic nebulizers and vibrating mesh nebulizers, delivered more aerosolized drug than traditional jet nebulizers.
Resumo:
BACKGROUND: Incarcerated hernias represent about 5-15 % of all operated hernias. Tension-free mesh is the preferred technique for elective surgery due to low recurrence rates. There is however currently no consensus on the use of mesh for the treatment of incarcerated hernias, especially in case of bowel resection. AIM: The aims of this study were (i) to report our current practice for the treatment of incarcerated hernias, (ii) to identify risk factors for postoperative complications, and (iii) to assess the safety of mesh placement in potentially infected surgical fields. METHODS: This retrospective study included 166 consecutive patients who underwent emergency surgery for incarcerated hernia between January 2007 and January 2012 in two university hospitals. Demographics, surgical details, and short-term outcome were collected. Univariate analysis was employed to identify risk factors for overall, infectious, and major complications. RESULTS: Eighty-four patients (50.6 %) presented inguinal hernias, 43 femoral (25.9 %), 37 umbilical hernias (22.3 %), and 2 mixed hernias (1.2 %), respectively. Mesh was placed in 64 patients (38.5 %), including 5 patients with concomitant bowel resection. Overall morbidity occurred in 56 patients (32.7 %), and 8 patients (4.8 %) developed surgical site infections (SSI). Univariate risk factors for overall complications were ASA grade 3/4 (P = 0.03), diabetes (P = 0.05), cardiopathy (P = 0.001), aspirin use (P = 0.023), and bowel resection (P = 0.001) which was also the only identified risk factor for SSI (P = 0.03). In multivariate analysis, only bowel incarceration was associated with a higher rate of major morbidity (OR = 14.04; P = 0.01). CONCLUSION: Morbidity after surgery for incarcerated hernia remains high and depends on comorbidities and surgical presentation. The use of mesh could become current practice even in case of bowel resection.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
Particle physics studies highly complex processes which cannot be directly observed. Scientific realism claims that we are nevertheless warranted in believing that these processes really occur and that the objects involved in them really exist. This dissertation defends a version of scientific realism, called causal realism, in the context of particle physics. I start by introducing the central theses and arguments in the recent philosophical debate on scientific realism (chapter 1), with a special focus on an important presupposition of the debate, namely common sense realism. Chapter 2 then discusses entity realism, which introduces a crucial element into the debate by emphasizing the importance of experiments in defending scientific realism. Most of the chapter is concerned with Ian Hacking's position, but I also argue that Nancy Cartwright's version of entity realism is ultimately preferable as a basis for further development. In chapter 3,1 take a step back and consider the question whether the realism debate is worth pursuing at all. Arthur Fine has given a negative answer to that question, proposing his natural ontologica! attitude as an alternative to both realism and antirealism. I argue that the debate (in particular the realist side of it) is in fact less vicious than Fine presents it. The second part of my work (chapters 4-6) develops, illustrates and defends causal realism. The key idea is that inference to the best explanation is reliable in some cases, but not in others. Chapter 4 characterizes the difference between these two kinds of cases in terms of three criteria which distinguish causal from theoretical warrant. In order to flesh out this distinction, chapter 5 then applies it to a concrete case from the history of particle physics, the discovery of the neutrino. This case study shows that the distinction between causal and theoretical warrant is crucial for understanding what it means to "directly detect" a new particle. But the distinction is also an effective tool against what I take to be the presently most powerful objection to scientific realism: Kyle Stanford's argument from unconceived alternatives. I respond to this argument in chapter 6, and I illustrate my response with a discussion of Jean Perrin's experimental work concerning the atomic hypothesis. In the final part of the dissertation, I turn to the specific challenges posed to realism by quantum theories. One of these challenges comes from the experimental violations of Bell's inequalities, which indicate a failure of locality in the quantum domain. I show in chapter 7 how causal realism can further our understanding of quantum non-locality by taking account of some recent experimental results. Another challenge to realism in quantum mechanics comes from delayed-choice experiments, which seem to imply that certain aspects of what happens in an experiment can be influenced by later choices of the experimenter. Chapter 8 analyzes these experiments and argues that they do not warrant the antirealist conclusions which some commentators draw from them. It pays particular attention to the case of delayed-choice entanglement swapping and the corresponding question whether entanglement is a real physical relation. In chapter 9,1 finally address relativistic quantum theories. It is often claimed that these theories are incompatible with a particle ontology, and this calls into question causal realism's commitment to localizable and countable entities. I defend the commitments of causal realism against these objections, and I conclude with some remarks connecting the interpretation of quantum field theory to more general metaphysical issues confronting causal realism.
Resumo:
Context: In the past 50 years, the use of prosthetic mesh in surgery has dramatically¦changed the management of primary, as well as incisional hernias. Currently, there¦are a large number of different mesh brands and no consensus on the best material,¦nor the best mesh implantation technique to use. The purpose of this study is to¦illustrate the adverse effects of intraperitoneal onlay mesh used for incisional¦hernia repair encountered in patients treated at CHUV for complications after¦incisional hernia repair.¦Materials & Methods: This work is an observational retrospective study. A PubMed¦search and a systematic review of literature were performed. Thereafter, the medical¦records of 22 patients who presented with pain, abdominal discomfort, ileus, fistula,¦abscess, seroma, mesh infection or recurrent incisional hernia after a laparoscopic or¦open repair with intra-abdominal mesh were reviewed.¦Results: Twenty-two persons were reoperated for complications after incisional¦hernia repair with a prosthetic mesh. Ten were male and twelve female, with a¦median age of 58,6 years (range 24-82). Mesh placement was performed by a¦laparoscopic approach in nine patients and by open approach in thirteen others.¦Eight different mesh brands were found (Ultrapro®, Mersilene®, Parietex Composite®,¦Proceed®, DynaMesh®, Gore® DualMesh®, Permacol®, Titanium Metals UK Ltd®).¦Mean time from implantation and reoperation for complication was 34.2 months¦(range 1-147). In our sample of 22 patients, 21 (96%) presented mesh adhesion and¦15 (68%) presented hernia recurrence. Others complications like mesh shrinkage,¦mesh migration, nerve entrapment, seroma, fistula and abscess were also evaluated.¦Conclusion: The majority of articles deal with complications induced by¦intraperitoneal prosthetic mesh, but the effectiveness of mesh has been studied¦mostly on experimental models. Actually and as shown in the present study,¦intraperitoneal mesh placement was associated with severe complications witch may¦potentially be life threatening. In our opinion, intraperitoneal mesh placement should¦only be reserved in exceptional situations, when the modified Rives-Stoppa could not¦be achieved and when tissues covering the mesh are insufficient.
Resumo:
Totally extraperitoneal laparoscopic hernia repair is an efficient but technically demanding procedure. As mechanisms of hernia recurrence may be related to these technical difficulties, we have modified a previously described double-mesh technique in an effort to simplify the procedure. Extraperitoneal laparoscopic hernia repairs were performed in 82 male and 17 female patients having inguinal, femoral, and recurrent bilateral hernias. A standard propylene mesh measuring 15 x 15 cm was cut into two pieces of 4 x 15 cm and 11 x 15 cm. The smaller mesh was placed over both inguinal rings without splitting. The larger mesh was then inserted over the first mesh and stapled to low-risk zones, reinforcing the large-vessel area and the nerve transition zone. The mean procedure duration was 60 minutes for unilateral and 100 minutes for bilateral hernia repair. Patients were discharged from the hospital within 48 hours. The mean postoperative follow-up was 22 months, with no recurrences, neuralgia, or bleeding complications. Over a 2-year period, this technique was found to be satisfactory without recurrences or significant complications. In our hands, this technique was easier to perform: it allows for a less than perfect positioning of the meshes and avoids most of the stapling to crucial zones.