11 resultados para PANCREATIC-ISLETS

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE-We studied whether manganese-enhanced high-field magnetic resonance (MR) imaging (MEHFMRI) could quantitatively detect individual islets in situ and in vivo and evaluate changes in a model of experimental diabetes.RESEARCH DESIGN AND METHODS-Whole pancreata from untreated (n = 3), MnCl(2) and glucose-injected mice (n = 6), and mice injected with either streptozotocin (STZ; n = 4) or citrate buffer (n = 4) were imaged ex vivo for unambiguous evaluation of islets. Exteriorized pancreata of MnCl(2) and glucose-injected mice (n = 6) were imaged in vivo to directly visualize the gland and minimize movements. In all cases, MR images were acquired in a 14.1 Testa scanner and correlated with the corresponding (immuno)histological sections.RESULTS-In ex vivo experiments, MEHFMRI distinguished different pancreatic tissues and evaluated the relative abundance of islets in the pancreata of normoglycemic mice. MEHFMRI also detected a significant decrease in the numerical and volume density of islets in STZ-injected mice. However, in the latter measurements the loss of beta-cells was undervalued under the conditions tested. The experiments on the externalized pancreata confirmed that MEHFMRI could visualize native individual islets in living, anesthetized mice.CONCLUSIONS-Data show that MEHFMRI quantitatively visualizes individual islets in the intact mouse pancreas, both ex vivo and in vivo. Diabetes 60:2853-2860, 2011

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), originally identified as a cytokine secreted by T lymphocytes, was found recently to be both a pituitary hormone and a mediator released by immune cells in response to glucocorticoid stimulation. We report here that the insulin-secreting beta cell of the islets of Langerhans expresses MIF and that its production is regulated by glucose in a time- and concentration-dependent manner. MIF and insulin colocalize by immunocytochemistry within the secretory granules of the pancreatic islet beta cells, and once released, MIF appears to regulate insulin release in an autocrine fashion. In perifusion studies performed with isolated rat islets, immunoneutralization of MIF reduced the first and second phase of the glucose-induced insulin secretion response by 39% and 31%, respectively. Conversely, exogenously added recombinant MIF was found to potentiate insulin release. Constitutive expression of MIF antisense RNA in the insulin-secreting INS-1 cell line inhibited MIF protein synthesis and decreased significantly glucose-induced insulin release. MIF is therefore a glucose-dependent, islet cell product that regulates insulin secretion in a positive manner and may play an important role in carbohydrate metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient ingestion triggers a complex hormonal response aimed at stimulating glucose utilization in liver, muscle and adipose tissue to minimize the raise in blood glucose levels. Insulin secretion by pancreatic beta cells plays a major role in this response. Although the beta cell secretory response is mainly controlled by blood glucose levels, gut hormones secreted in response to food intake have an important role in potentiating glucose-stimulated insulin secretion. These gluco-incretin hormones are GLP-1 (glucagon-like peptide-1) and GIP (gluco-dependent insulinotropic polypeptide). Their action on pancreatic beta cells depends on binding to specific G-coupled receptors linked to activation of the adenylyl cyclase pathway. In addition to their effect on insulin secretion both hormones also stimulate insulin production at the transcriptional and translational level and positively regulate beta cell mass. Because the glucose-dependent insulinotropic action of GLP-1 is preserved in type 2 diabetic patients, this peptide is now developed as a novel therapeutic drug for this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main cytological features of neuroendocrine pancreatic neoplasm are described along with a discussion about the difficulties in classification/grading and the new reporting system for reporting pancreatic cytopathology. An overview about the ancillary techniques and the differential diagnosis is also given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibition of pancreatic glucagon secretion has been reported to be mediated by glucose, insulin and somatostatin. As no human pancreatic alpha-cell lines are available to study in vitro the relative importance of insulin and glucose in the control of pancreatic glucagon release, we investigated a patient presenting with a malignant glucagonoma who underwent surgical resection of the tumour. Functional somatostatin receptors were present as octreotide administration decreased basal glucagon and insulin secretion by 52 and 74%, respectively. The removed tumour was immunohistochemically positive for glucagon, chromogranin A and pancreatic polypeptide but negative for insulin, gastrin and somatostatin. The glucagonoma cells were also isolated and cultured in vitro. Incubation experiments revealed that change from high (10 mM) to low (1 mM) glucose concentration was unable to stimulate glucagon secretion. A dose-dependent inhibition of glucagon release by insulin was however, observed at low glucose concentration. These findings demonstrate that insulin could inhibit glucagon secretion in vitro in the absence of elevated glucose concentrations. These data suggest, as observed in vivo and in vitro in several animal studies, that glucopenia-induced glucagon secretion in humans is not mediated by a direct effect of low glucose on alpha-cells but possibly by a reduction of insulin-mediated alpha-cell suppression and/or an indirect neuronal stimulation of glucagon release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key aspect of glucose homeostasis is the constant monitoring of blood glucose concentrations by specific glucose sensing units. These sensors, via stimulation of hormone secretion and activation of the autonomic nervous system (ANS), regulate tissue glucose uptake, utilization or production. The best described glucose detection system is that of the pancreatic beta-cells which controls insulin secretion. Secretion of other hormones, in particular glucagon, and activation of the ANS, are regulated by glucose through sensing mechanisms which are much less well characterized. Here I review some of the studies we have performed over the recent years on a mouse model of impaired glucose sensing generated by inactivation of the gene for the glucose transporter GLUT2. This transporter catalyzes glucose uptake by pancreatic beta-cells, the first step in the signaling cascade leading to glucose-stimulated insulin secretion. Inactivation of its gene leads to a loss of glucose sensing and impaired insulin secretion. Transgenic reexpression of the transporter in GLUT2/beta-cells restores their normal secretory function and rescues the mice from early death. As GLUT2 is also expressed in other tissues, these mice were then studied for the presence of other physiological defects due to absence of this transporter. These studies led to the identification of extra-pancreatic, GLUT2-dependent, glucose sensors controlling glucagon secretion and glucose utilization by peripheral tissues, in part through a control of the autonomic nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2007 was marked by a growing trend towards minimal invasive surgery and enhanced recovery, especially in visceral surgery. In comparison to the laparoscopic revolution in the eighties, Natural orifice transluminal endoscopic surgery (NOTES) must be watched on closely, and will probably have to be taken into account in a near future. Minimal invasive procedures in oesophageal cancer surgery have proved both efficient and oncologically safe. Implementation of Fast track protocols now permits a much faster patient's return to normal daily activity. In hepatobiliary and pancreatic surgery, multidisciplinary efforts have been done to better select patients, widen the indications and increase efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-density lipoproteins (HDLs) exert a series of potentially beneficial effects on many cell types including anti-atherogenic actions on the endothelium and macrophage foam cells. HDLs may also exert anti-diabetogenic functions on the beta cells of the endocrine pancreas, notably by potently inhibiting stress-induced cell death and enhancing glucose-stimulated insulin secretion. HDLs have also been found to stimulate insulin-dependent and insulin-independent glucose uptake into skeletal muscle, adipose tissue, and liver. These experimental findings and the inverse association of HDL-cholesterol levels with the risk of diabetes development have generated the notion that appropriate HDL levels and functionality must be maintained in humans to diminish the risks of developing diabetes. In this article, we review our knowledge on the beneficial effects of HDLs in pancreatic beta cells and how these effects are mediated. We discuss the capacity of HDLs to modulate endoplasmic reticulum stress and how this affects beta-cell survival. We also point out the gaps in our understanding on the signalling properties of HDLs in beta cells. Hopefully, this review will foster the interest of scientists in working on beta cells and diabetes to better define the cellular pathways activated by HDLs in beta cells. Such knowledge will be of importance to design therapeutic tools to preserve the proper functioning of the insulin-secreting cells in our body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

QUESTIONS UNDER STUDY: Since tumour burden consumes substantial healthcare resources, precise cancer incidence estimations are pivotal to define future needs of national healthcare. This study aimed to estimate incidence and mortality rates of oesophageal, gastric, pancreatic, hepatic and colorectal cancers up to 2030 in Switzerland. METHODS: Swiss Statistics provides national incidences and mortality rates of various cancers, and models of future developments of the Swiss population. Cancer incidences and mortality rates from 1985 to 2009 were analysed to estimate trends and to predict incidence and mortality rates up to 2029. Linear regressions and Joinpoint analyses were performed to estimate the future trends of incidences and mortality rates. RESULTS: Crude incidences of oesophageal, pancreas, liver and colorectal cancers have steadily increased since 1985, and will continue to increase. Gastric cancer incidence and mortality rates reveal an ongoing decrease. Pancreatic and liver cancer crude mortality rates will keep increasing, whereas colorectal cancer mortality on the contrary will fall. Mortality from oesophageal cancer will plateau or minimally increase. If we consider European population-standardised incidence rates, oesophageal, pancreatic and colorectal cancer incidences are steady. Gastric cancers are diminishing and liver cancers will follow an increasing trend. Standardised mortality rates show a diminution for all but liver cancer. CONCLUSIONS: The oncological burden of gastrointestinal cancer will significantly increase in Switzerland during the next two decades. The crude mortality rates globally show an ongoing increase except for gastric and colorectal cancers. Enlarged healthcare resources to take care of these complex patient groups properly will be needed.