223 resultados para P element activity
em Université de Lausanne, Switzerland
Resumo:
The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session.
Resumo:
P-glycoprotein (P-gly) is the transmembrane efflux pump responsible for multidrug resistance in tumor cells. The activity of P-gly in mature peripheral lymphocytes is lineage specific, with CD8+ T cells and natural killer (NK) cells expressing high levels as compared to CD4+ T cells and B cells. We have now investigated P-gly activity in immature and mature subsets of mouse thymocytes. Our data indicate that P-gly activity is undetectable in immature CD4-8- and CD4+8+ thymocyte subsets. Among mature thymocytes, P-gly activity is absent in the CD4+ subset but present in the more mature (HSAlow) fraction of CD8+ cells. Furthermore, while thymic CD4-8- T cell receptor (TCR) gamma delta cells have little P-gly activity, a minor subset of CD4-8- or CD4+ TCR alpha beta + thymocytes bearing the NK1.1 surface marker expresses high levels of P-gly activity. Collectively, our results indicate that P-gly activity arises late during thymus development and is expressed in a lineage-specific fashion.
Resumo:
The positive transcription elongation factor (P-TEFb) consists of CDK9, a cyclin-dependent kinase and its cyclin T partner. It is required for transcription of most class II genes. Its activity is regulated by non-coding RNAs. The 7SK cellular RNA turns the HEXIM cellular protein into a P-TEFb inhibitor that binds its cyclin T subunit. Thus, P-TEFb activity responds to variations in global cellular transcriptional activity and to physiological conditions linked to cell differentiation, proliferation or cardiac hypertrophy. In contrast, the Tat activation region RNA plays an activating role. This feature at the 5' end of the human immunodeficiency (HIV) viral transcript associates with the viral protein Tat that in turn binds cyclin T1 and recruits active P-TEFb to the HIV promoter. This results in enhanced P-TEFb activity, which is critical for an efficient production of viral transcripts. Although discovered recently, the regulation of P-TEFb becomes a paradigm for non-coding RNAs that regulate transcription factors. It is also a unique example of RNA-driven regulation of a cyclindependent kinase.
Resumo:
IMPORTANCE OF THE FIELD: The permeability glycoprotein (P-gp) is an important protein transporter involved in the disposition of many drugs with different chemical structures, but few studies have examined a possible stereoselectivity in its activity. P-gp can have a major impact on the distribution of drugs in selected organs, including the brain. Polymorphisms of the ABCB1 gene, which encodes for P-gp, can influence the kinetics of several drugs. AREAS COVERED IN THIS REVIEW: A search including publications from 1990 up to 2009 was performed on P-gp stereoselectivity and on the impact of ABCB1 polymorphisms on enantiomer brain distribution. WHAT THE READER WILL GAIN: Despite stereoselectivity not being expected because of the large variability of chemical structures of P-gp substrates, structure-activity relationships suggest different P-gp-binding sites for enantiomers. Enantioselectivity in the activity of P-gp has been demonstrated by in vitro studies and in animal models (preferential transport of one enantiomer or different inhibitory potencies towards P-gp activity between enantiomers). There is also in vivo evidence of an enantioselective drug transport at the human blood-brain barrier. TAKE HOME MESSAGE: The significant enantioselective activity of P-gp might be clinically relevant and must be taken into account in future studies.
Resumo:
BACKGROUND: Lapatinib is an effective anti-HER2 therapy in advanced breast cancer and docetaxel is one of the most active agents in breast cancer. Combining these agents in pre-treated patients with metastatic disease had previously proved challenging, so the primary objective of this study aimed to determine the maximum tolerated dose (MTD) in treatment-naive patients, by identifying acute dose-limiting toxicities (DLT) during cycle 1 in the first part of a phases 1-2 neoadjuvant European Organisation for Research and Treatment of Cancer (EORTC) trial. PATIENTS AND METHODS: Patients with large operable or locally-advanced HER2 positive breast cancer were treated with continuous lapatinib, and docetaxel every 21days for 4 cycles. Dose levels (DLs) were: 1000/75, 1250/75, 1000/85, 1250/85, 1000/100 and 1250/100 (mg/day)/(mg/m(2)). RESULTS: Twenty-one patients were included. Two DLTs occurred at dose level 5 (1000/100); one grade 4 neutropenia ⩾7days and one febrile neutropenia. A further 3 patients were therefore treated at the same dose with prophylactic granulocyte-colony stimulating factor (G-CSF), and 3 patients at dose level 6. No further DLTs were observed. CONCLUSIONS: Our recommended dose for phase II is lapatinib 1000mg/day and docetaxel 100mg/m(2) with G-CSF in HER2 positive non-metastatic breast cancer. The dose of lapatinib should have been 1250mg/day but we were mindful of the high rate of treatment discontinuation in GeparQuinto with lapatinib 1250mg/day combined with docetaxel. No grade 3-4 diarrhoea was observed. Pharmacodynamics analysis suggests that concomitant medications altering P-glycoprotein activity (in addition to lapatinib) can modify toxicity, including non-haematological toxicities. This needs verification in larger trials, where it may contribute to understanding the sources of variability in clinical toxicity and treatment discontinuation.
Resumo:
Odorant receptor (OR) genes constitute with 1200 members the largest gene family in the mouse genome. A mature olfactory sensory neuron (OSN) is thought to express just one OR gene, and from one allele. The cell bodies of OSNs that express a given OR gene display a mosaic pattern within a particular region of the main olfactory epithelium. The mechanisms and cis-acting DNA elements that regulate the expression of one OR gene per OSN - OR gene choice - remain poorly understood. Here, we describe a reporter assay to identify minimal promoters for OR genes in transgenic mice, which are produced by the conventional method of pronuclear injection of DNA. The promoter transgenes are devoid of an OR coding sequence, and instead drive expression of the axonal marker tau-β-galactosidase. For four mouse OR genes (M71, M72, MOR23, and P3) and one human OR gene (hM72), a mosaic, OSN-specific pattern of reporter expression can be obtained in transgenic mice with contiguous DNA segments of only ~300 bp that are centered around the transcription start site (TSS). The ~150bp region upstream of the TSS contains three conserved sequence motifs, including homeodomain (HD) binding sites. Such HD binding sites are also present in the H and P elements, DNA sequences that are known to strongly influence OR gene expression. When a 19mer encompassing a HD binding site from the P element is multimerized nine times and added upstream of a MOR23 minigene that contains the MOR23 coding region, we observe a dramatic increase in the number of transgene-expressing founders and lines and in the number of labeled OSNs. By contrast, a nine times multimerized 19mer with a mutant HD binding site does not have these effects. We hypothesize that HD binding sites in the H and P elements and in OR promoters modulate the probability of OR gene choice.
Resumo:
Abstract Imatinib (Glivec~ has transformed the treatment and prognosis of chronic myeloid leukaemia (CML) and of gastrointestinal stromal tumor (GIST). However, the treatment must be taken indefinitely and is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occurs. Considering the large interindividual differences in the function of the enzymatic and transport systems involved in imatinib disposition, exposure to this drug can be expected to vary widely among patients. Among those known systems is a cytochrome P450 (CYI'3A4) that metabolizes imatinib, the multidrug transporter P-glycoprotein (P-gp; product of the MDR1 gene) that expels imatinib out of cells, and al-acid glycoprotein (AGP), a circulating protein binding imatinib in the plasma. The aim of this observational study was to explore the influence of these covariates on imatinib pharmacokinetics (PK), to assess the interindividual variability of the PK parameters of the drug, and to evaluate whether imatinib use would benefit from a therapeutic drug monitoring (TDM) program. A total of 321 plasma concentrations were measured in 59 patients receiving imatinib, using a validated chromatographic method developed for this study (HPLC-LTV). The results were analyzed by non-linear mixed effect modeling (NONMEM). A one-compartment pharmacokinetic model with first-order absorption appropriately described the data, and a large interindividual variability was observed. The MDK> polymorphism 3435C>T and the CYP3A4 activity appeared to modulate the disposition of imatinib, albeit not significantly. A hyperbolic relationship between plasma AGP levels and oral clearance, as well as volume of distribution, was observed. A mechanistic approach was built up, postulating that only the unbound imatinib concentration was able to undergo first-order elimination. This approach allowed determining an average free clearance (CL,~ of 13101/h and a volume of distribution (Vd) of 301 1. By comparison, the total clearance determined was 141/h (i.e. 233 ml/min). Free clearance was affected by body weight and pathology diagnosis. The estimated variability of imatinib disposition (17% for CLu and 66% for Vd) decreased globally about one half with the model incorporating the AGP impact. Moreover, some associations were observed between PK parameters of the free imatinib concentration and its efficacy and toxicity. Finally, the functional influence of P-gp activity has been demonstrated in vitro in cell cultures. These elements are arguments to further investigate the possible usefulness of a TDM program for imatinib. It may help in individualizing the dosing regimen before overt disease progression or development of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug. Résumé L'imatinib (Glivec ®) a révolutionné le traitement et le pronostic de la leucémie myéloïde chronique (LMC) et des tumeurs stromales d'origine digestive (GIST). Il s'agit toutefois d'un traitement non dénué d'inconvénients et de toxicité, et qui doit être pris indéfiniment. Par ailleurs, une résistance, ou des échappements au traitement, sont également rencontrés. Le devenir de ce médicament dans l'organisme dépend de systèmes enzymatiques et de transport connus pour présenter de grandes différences interindividuelles, et l'on peut s'attendre à ce que l'exposition à ce médicament varie largement d'un patient à l'autre. Parmi ces systèmes, on note un cytochrome P450 (le CYP3A4) métabolisant l'imatinib, la P-glycoprotéine (P-gp ;codée par le gène MDR1), un transporteur d'efflux expulsant le médicament hors des cellules, et l'atglycoprotéine acide (AAG), une protéine circulante sur laquelle se fixe l'imatinib dans le plasma. L'objectif de la présente étude clinique a été de déterminer l'influence de ces covariats sur la pharmacocinétique (PK) de l'imatinib, d'établir la variabilité interindividuelle des paramètres PK du médicament, et d'évaluer dans quelle mesure l'imatinib pouvait bénéficier d'un programme de suivi thérapeutique (TDM). En utilisant une méthode chromatographique développée et validée à cet effet (HPLC-UV), un total de 321 concentrations plasmatiques a été dosé chez 59 patients recevant de l'imatinib. Les résultats ont été analysés par modélisation non linéaire à effets mixtes (NONMEM). Un modèle pharmacocinétique à un compartiment avec absorption de premier ordre a permis de décrire les données, et une grande variabilité interindividuelle a été observée. Le polymorphisme du gène MDK1 3435C>T et l'activité du CYP3A4 ont montré une influence, toutefois non significative, sur le devenir de l'imatinib. Une relation hyperbolique entre les taux plasmatiques d'AAG et la clairance, comme le volume de distribution, a été observée. Une approche mécanistique a donc été élaborée, postulant que seule la concentration libre subissait une élimination du premier ordre. Cette approche a permis de déterminer une clairance libre moyenne (CLlibre) de 13101/h et un volume de distribution (Vd) de 301 l. Par comparaison, la clairance totale était de 141/h (c.à.d. 233 ml/min). La CLlibre est affectée par le poids corporel et le type de pathologie. La variabilité interindividuelle estimée pour le devenir de l'imatinib (17% sur CLlibre et 66% sur Vd) diminuait globalement de moitié avec le modèle incorporant l'impact de l'AAG. De plus, une certaine association entre les paramètres PK de la concentration d'imatinib libre et l'efficacité et la toxicité a été observée. Finalement, l'influence fonctionnelle de l'activité de la P-gp a été démontrée in nitro dans des cultures cellulaires. Ces divers éléments constituent des arguments pour étudier davantage l'utilité potentielle d'un programme de TDM appliqué à l'imatinib. Un tel suivi pourrait aider à l'individualisation des régimes posologiques avant la progression manifeste de la maladie ou l'apparition de toxicité, améliorant tant l'efficacité que la tolérabilité de ce médicament. Résumé large public L'imatinib (un médicament commercialisé sous le nom de Glivec ®) a révolutionné le traitement et le pronostic de deux types de cancers, l'un d'origine sanguine (leucémie) et l'autre d'origine digestive. Il s'agit toutefois d'un traitement non dénué d'inconvénients et de toxicité, et qui doit être pris indéfiniment. De plus, des résistances ou des échappements au traitement sont également rencontrés. Le devenir de ce médicament dans le corps humain (dont l'étude relève de la discipline appelée pharmacocinétique) dépend de systèmes connus pour présenter de grandes différences entre les individus, et l'on peut s'attendre à ce que l'exposition à ce médicament varie largement d'un patient à l'autre. Parmi ces systèmes, l'un est responsable de la dégradation du médicament dans le foie (métabolisme), l'autre de l'expulsion du médicament hors des cellules cibles, alors que le dernier consiste en une protéine (dénommée AAG) qui transporte l'imatinib dans le sang. L'objectif de notre étude a été de déterminer l'influence de ces différents systèmes sur le comportement pharmacocinétique de l'imatinib chez les patients, et d'étudier dans quelle mesure le devenir de ce médicament dans l'organisme variait d'un patient à l'autre. Enfin, cette étude avait pour but d'évaluer à quel point la surveillance des concentrations d'imatinib présentes dans le sang pourrait améliorer le traitement des patients cancéreux. Une telle surveillance permet en fait de connaître l'exposition effective de l'organisme au médicament (concept abrégé par le terme anglais TDM, pour Therapeutic Drag Monitoring. Ce projet de recherche a d'abord nécessité la mise au point d'une méthode d'analyse pour la mesure des quantités (ou concentrations) d'imatinib présentes dans le sang. Cela nous a permis d'effectuer régulièrement des mesures chez 59 patients. Il nous a ainsi été possible de décrire le devenir du médicament dans le corps à l'aide de modèles mathématiques. Nous avons notamment pu déterminer chez ces patients la vitesse à laquelle l'imatinib est éliminé du sang et l'étendue de sa distribution dans l'organisme. Nous avons également observé chez les patients que les concentrations sanguines d'imatinib étaient très variables d'un individu à l'autre pour une même dose de médicament ingérée. Nous avons pu aussi mettre en évidence que les concentrations de la protéine AAG, sur laquelle l'imatinib se lie dans le sang, avait une grande influence sur la vitesse à laquelle le médicament est éliminé de l'organisme. Ensuite, en tenant compte des concentrations sanguines d'imatinib et de cette protéine, nous avons également pu calculer les quantités de médicament non liées à cette protéine (= libres), qui sont seules susceptibles d'avoir une activité anticancéreuse. Enfin, il a été possible d'établir qu'il existait une certaine relation entre ces concentrations, l'effet thérapeutique et la toxicité du traitement. Tous ces éléments constituent des arguments pour approfondir encore l'étude de l'utilité d'un programme de TDM appliqué à l'imatinib. Comme chaque patient est différent, un tel suivi pourrait aider à l'ajustement des doses du médicament avant la progression manifeste de la maladie ou l'apparition de toxicité, améliorant ainsi tant son efficacité que son innocuité.
Resumo:
Matrix attachment regions are DNA sequences found throughout eukaryotic genomes that are believed to define boundaries interfacing heterochromatin and euchromatin domains, thereby acting as epigenetic regulators. When included in expression vectors, MARs can improve and sustain transgene expression, and a search for more potent novel elements is therefore actively pursued to further improve recombinant protein production. Here we describe the isolation of new MARs from the mouse genome using a modified in silico analysis. One of these MARs was found to be a powerful activator of transgene expression in stable transfections. Interestingly, this MAR also increased GFP and/or immunoglobulin expression from some but not all expression vectors in transient transfections. This effect was attributed to the presence or absence of elements on the vector backbone, providing an explanation for earlier discrepancies as to the ability of this class of elements to affect transgene expression under such conditions.
Resumo:
During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria.
Resumo:
The human estrogen receptor (hER) is a trans-acting regulatory protein composed of a series of discrete functional domains. We have microinjected an hER expression vector (HEO) into Xenopus oocyte nuclei and demonstrate, using Western blot assay, that the hER is synthesized. When nuclear extracts from oocytes were prepared and incubated in the presence of a 2.7 kb DNA fragment comprising the 5' end of the vitellogenin gene B2, formation of estrogen-dependent complexes could be visualized by electron microscopy over the estrogen responsive element (ERE). Of crucial importance is the observation that the complex formation is inhibited by the estrogen antagonist tamoxifen, is restored by the addition of the hormone and does not take place with extracts from control oocytes injected with the expression vector lacking the sequences encoding the receptor. The presence of the biologically active hER is confirmed in co-injection experiments, in which HEO is co-introduced with a CAT reporter gene under the control of a vitellogenin promoter containing or lacking the ERE. CAT assays and primer extensions analyses reveal that both the receptor and the ERE are essential for estrogen induced stimulation of transcription. The same approach was used to analyze selective hER mutants. We find that the DNA binding domain (region C) is essential for protein--DNA complex formation at the ERE but is not sufficient by itself to activate transcription from the reporter gene. In addition to region C, both the hormone binding (region E) and amino terminal (region A/B) domains are needed for an efficient transcription activation.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
OBJECTIVEIncrease in adipose cAMP response binding protein (CREB) activity promotes adipocyte dysfunction and systemic insulin resistance in obese mice. This is achieved by increasing the expression of activating transcription factor 3 (ATF3). In this study we investigated whether impaired expression of the inducible cAMP early repressor (ICER), a transcriptional antagonist of CREB, is responsible for the increased CREB activity in adipocytes of obese mice and humans.RESEARCH DESIGN AND METHODSTotal RNA and nuclear proteins were prepared from visceral adipose tissue (VAT) of human nonobese or obese subjects, and white adipose tissue (WAT) of C57Bl6-Rj mice that were fed with normal or high-fat diet for 16 weeks. The expression of genes was monitored by real-time PCR, Western blotting, and electromobility shift assays. RNA interference was used to silence the expression of Icer.RESULTSThe expression of Icer/ICER was reduced in VAT and WAT of obese humans and mice, respectively. Diminution of Icer/ICER was restricted to adipocytes and was accompanied by a rise of Atf3/ATF3 and diminution of Adipoq/ADIPOQ and Glut4/GLUT4. Silencing the expression of Icer in 3T3-L1 adipocytes mimicked the results observed in human and mice cells and hampered glucose uptake, thus confirming the requirement of Icer for appropriate adipocyte function.CONCLUSIONSImpaired expression of ICER contributes to elevation in CREB target genes and, therefore, to the development of insulin resistance in obesity.
Resumo:
Macrophage migration-inhibitory factor (MIF) has recently been identified as a pituitary hormone that functions as a counterregulatory modulator of glucocorticoid action within the immune system. In the anterior pituitary gland, MIF is expressed in TSH- and ACTH-producing cells, and its secretion is induced by CRF. To investigate MIF function and regulation within pituitary cells, we initiated the characterization of the MIF 5'-regulatory region of the gene. The -1033 to +63 bp of the murine MIF promoter was cloned 5' to a luciferase reporter gene and transiently transfected into freshly isolated rat anterior pituitary cells. This construct drove high basal transcriptional activity that was further enhanced after stimulation with CRF or with an activator of adenylate cyclase. These transcriptional effects were associated with a concomitant rise in ACTH secretion in the transfected cells and by an increase in MIF gene expression as assessed by Northern blot analysis. A cAMP-responsive element (CRE) was identified within the MIF promoter region which, once mutated, abolished the cAMP responsiveness of the gene. Using this newly identified CRE, DNA-binding activity was detected by gel retardation assay in nuclear extracts prepared from isolated anterior pituitary cells and AtT-20 corticotrope tumor cells. Supershift experiments using antibodies against the CRE-binding protein CREB, together with competition assays and the use of recombinant CREB, allowed the detection of CREB-binding activity with the identified MIF CRE. These data demonstrate that CREB is the mediator of the CRF-induced MIF gene transcription in pituitary cells through an identified CRE in the proximal region of the MIF promoter.
Resumo:
The long-chain acyl-coenzyme A synthetase (ACS) gene gives rise to three transcripts containing different first exons preceded by specific regulatory regions A, B, and C. Exon-specific oligonucleotide hybridization indicated that only A-ACS mRNA is expressed in rat liver. Fibrate administration induced liver C-ACS strongly and A-ACS mRNA to a lesser extent. B-ACS mRNA remained undetectable. In primary rat hepatocytes and Fa-32 hepatoma cells C-ACS mRNA increased after treatment with fenofibric acid, alpha-bromopalmitate, tetradecylthioacetic acid, or alpha-linolenic acid. Nuclear run-on experiments indicated that fenofibric acid and alpha-bromopalmitate act at the transcriptional level. Transient transfections showed a 3.4-, 2.3-, and 2.2-fold induction of C-ACS promoter activity after fenofibric acid, alpha-bromopalmitate, and tetradecylthioacetic acid, respectively. Unilateral deletion and site-directed mutagenesis identified a peroxisome proliferator activator receptor (PPAR)-responsive element (PPRE) mediating the responsiveness to fibrates and fatty acids. This ACS PPRE contains three imperfect half sites spaced by 1 and 3 oligonucleotides and binds PPAR.retinoid X receptor heterodimers in gel retardation assays. In conclusion, the regulation of C-ACS mRNA expression by fibrates and fatty acids is mediated by PPAR.retinoid X receptor heterodimers interacting through a PPRE in the C-ACS promoters. PPAR therefore occupies a key position in the transcriptional control of a pivotal enzyme controlling the channeling of fatty acids into various metabolic pathways.
Resumo:
Myc activity is emerging as a key element in acquisition and maintenance of stem cell properties. We have previously shown that c-Myc deficiency results in accumulation of defective hematopoietic stem cells (HSCs) due to niche-dependent differentiation defects. Here we report that immature HSCs coexpress c-myc and N-myc mRNA at similar levels. Although conditional deletion of N-myc in the bone marrow does not affect hematopoiesis, combined deficiency of c-Myc and N-Myc (dKO) results in pancytopenia and rapid lethality. Interestingly, proliferation of HSCs depends on both myc genes during homeostasis, but is c-Myc/N-Myc independent during bone marrow repair after injury. Strikingly, while most dKO hematopoietic cells undergo apoptosis, only self-renewing HSCs accumulate the cytotoxic molecule Granzyme B, normally employed by the innate immune system, thereby revealing an unexpected mechanism of stem cell apoptosis. Collectively, Myc activity (c-Myc and N-Myc) controls crucial aspects of HSC function including proliferation, differentiation, and survival.
Resumo:
The cross-recognition of peptides by cytotoxic T lymphocytes is a key element in immunology and in particular in peptide based immunotherapy. Here we develop three-dimensional (3D) quantitative structure-activity relationships (QSARs) to predict cross-recognition by Melan-A-specific cytotoxic T lymphocytes of peptides bound to HLA A*0201 (hereafter referred to as HLA A2). First, we predict the structure of a set of self- and pathogen-derived peptides bound to HLA A2 using a previously developed ab initio structure prediction approach [Fagerberg et al., J. Mol. Biol., 521-46 (2006)]. Second, shape and electrostatic energy calculations are performed on a 3D grid to produce similarity matrices which are combined with a genetic neural network method [So et al., J. Med. Chem., 4347-59 (1997)] to generate 3D-QSAR models. The models are extensively validated using several different approaches. During the model generation, the leave-one-out cross-validated correlation coefficient (q (2)) is used as the fitness criterion and all obtained models are evaluated based on their q (2) values. Moreover, the best model obtained for a partitioned data set is evaluated by its correlation coefficient (r = 0.92 for the external test set). The physical relevance of all models is tested using a functional dependence analysis and the robustness of the models obtained for the entire data set is confirmed using y-randomization. Finally, the validated models are tested for their utility in the setting of rational peptide design: their ability to discriminate between peptides that only contain side chain substitutions in a single secondary anchor position is evaluated. In addition, the predicted cross-recognition of the mono-substituted peptides is confirmed experimentally in chromium-release assays. These results underline the utility of 3D-QSARs in peptide mimetic design and suggest that the properties of the unbound epitope are sufficient to capture most of the information to determine the cross-recognition.