5 resultados para Oxygen

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization temperatures of the oceanic carbonatites of Fuerteventura, Canary Islands, have been determined from oxygen isotope fractionations between calcite, silicate minerals (feldspar, pyroxene, biotite, and zircon) and magnetite. The measured fractionations have been interpreted in the light of late stage interactions with meteoric and/or magmatic water. Cathodoluminescence characteristics were investigated for the carbonatite minerals in order to determine the extent of alteration and to select unaltered samples. Oxygen isotope fractionations of minerals of unaltered samples yield crystallization temperatures between 450 and 960degreesC (average 710degreesC). The highest temperature is obtained from pyroxene-calcite pairs. The above range is in agreement with other carbonatite thermometric Studies. This is the first study that provides oxygen isotope data coupled with a CL study on carbonatite-related zircon. The CL pictures revealed that the zircon is broken and altered in the carbonatites and in associated syenites. Regarding geological field evidences of syenite-carbonatite relationship and the close agreement of published zircon U/Pb and whole rock and biotite K/Ar and Ar-Ar age data, the most probable process is early zircon crystallization from the syenite magma and late-stage reworking during magma evolution and carbonatite segregation. The oxygen isotope fractionations between zircon and other carbonatite minerals (calcite and pyroxene) support the assumption that the zircon would correspond to the early crystallization of syenite-carbonatite magmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen uptake was studied during the establishment of cephalocaudal polarity in the very early chick embryo, i.e., 10 hr before (stage VI) and at laying (stage X). Oxygen fluxes in minute regions of the intact blastoderms were measured in vitro by scanning microspectrophotometry in the presence or absence of glucose. The oxygen consumption of the whole blastoderm remained constant (6 nmol O2 X hr-1) throughout the period studied, although the number of cells increased more than twofold. The regional oxygen fluxes varied from 0.41 to 1.13 nmol O2 X hr-1 X mm-2 at stage VI and from 0.42 to 0.70 nmol O2 X hr-1 X mm-2 at stage X. At stage VI, the oxygen flux in the center of the blastoderm was significantly higher than that in its periphery. This pattern remained evident when the values were corrected for cell number or for cytoplasmic volume. At stage X, there was a tendency for the oxygen fluxes to decrease from the posterior to the anterior regions of the area pellucida. Thus the pattern of oxidative metabolism in the late uterine embryos seems to change from radial to bilateral. This change of symmetry probably reflects the process of formation of the embryonic axis. In addition, the fact that the oxygen uptake was similar in the presence or absence of glucose suggests that early chick embryos metabolize essentially intracellular stores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stable isotope composition of waters (delta H-2, delta O-18) can be used as a natural tracer of hydrologic processes in systems affected by acid mine drainage. We investigated the delta H-2 and delta O-18 values of pore waters from four oxidizing sulfidic mine tailings impoundments in different climatic regions of Chile (Piuquenes at La Andina with Alpine climate, Cauquenes and Caren at El Teniente with Mediterranean climate, and Talabre at the Chuquicamata deposit with hyperarid climate). No clear relationship was found between altitude and isotopic composition. The observed displacement of the tailings pore waters from the local meteoric water line toward higher delta O-18 values (by similar to +2% delta O-18 relative to delta H-2) is partly due to water-rock interaction processes, including hydration and O-isotope exchange with sulfates and Fe(III) oxyhydroxides produced by pyrite oxidation. In most tailings, from the saturated zone toward the surface, isotopically different zones can be distinguished. Zone I is characterized by an upward depletion of H-2 and O-18 in the pore waters from the saturated zone and the lowermost vadose zone, due to ascending diffused isotopically light water triggered by the constant loss of water vapor by evaporation at the surface. In zone II, the capillary flow of a mix of vapor and liquid water causes an evaporative isotopic enrichment in H-2 and O-18. At the top of the tailings in dry climate a zone III between the capillary zone and the surface contains isotopically light diffused and atmospheric water vapor. In temperate climates, the upper part of the profile is affected by recent rainfall and zone III may not differ isotopically from zone II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.