75 resultados para Oviposition Preference
em Université de Lausanne, Switzerland
Resumo:
Recirculating virgin CD4+ T cells spend their life migrating between the T zones of secondary lymphoid tissues where they screen the surface of interdigitating dendritic cells. T-cell priming starts when processed peptides or superantigen associated with class II MHC molecules are recognised. Those primed T cells that remain within the lymphoid tissue move to the outer T zone, where they interact with B cells that have taken up and processed antigen. Cognate interaction between these cells initiates immunoglobulin (Ig) class switch-recombination and proliferation of both B and T cells; much of this growth occurs outside the T zones B cells migrate to follicles, where they form germinal centres, and to extrafollicular sites of B-cell growth, where they differentiate into mainly short-lived plasma cells. T cells do not move to the extrafollicular foci, but to the follicles; there they proliferate and are subsequently involved in the selection of B cells that have mutated their Ig variable-region genes. During primary antibody responses T-cell proliferation in follicles produces many times the peak number of T cells found in that site: a substantial proportion of the CD4+ memory T-cell pool may originate from growth in follicles.
Resumo:
Arbuscular mycorrhizal symbioses are mutualistic interactions between fungi and most plants. There is considerable interest in this symbiosis because of the strong nutritional benefits conferred to plants and its influence on plant diversity. Until recently, the symbiosis was assumed to be unspecific. However, two studies have now revealed that although it can be largely unspecific with the fungal community composition changing seasonally, in certain ecosystems it can also be highly specific and might potentially allow plants to cheat the arbuscular mycorrhizal network that connects plants below ground.
Resumo:
Insect eggs represent a threat for the plant as hatching larvae rapidly start with their feeding activity. Using a whole-genome microarray, we studied the expression profile of Arabidopsis (Arabidopsis thaliana) leaves after oviposition by two pierid butterflies. For Pieris brassicae, the deposition of egg batches changed the expression of hundreds of genes over a period of 3 d after oviposition. The transcript signature was similar to that observed during a hypersensitive response or in lesion-mimic mutants, including the induction of defense and stress-related genes and the repression of genes involved in growth and photosynthesis. Deposition of single eggs by Pieris rapae caused a similar although much weaker transcriptional response. Analysis of the jasmonic acid and salicylic acid mutants coi1-1 and sid2-1 indicated that the response to egg deposition is mostly independent of these signaling pathways. Histochemical analyses showed that egg deposition is causing a localized cell death, accompanied by the accumulation of callose, and the production of reactive oxygen species. In addition, activation of the pathogenesis-related1::beta-glucuronidase reporter gene correlated precisely with the site of egg deposition and was also triggered by crude egg extract. This study provides molecular evidence for the detection of egg deposition by Arabidopsis plants and suggests that oviposition causes a localized response with strong similarity to a hypersensitive response.
Resumo:
Several internally fertilizing hermaphroditic animals can only perform one sexual role at a time. In such species, two individuals that engage in a copulation may have different interests in acting as male or female. A gender choice must be made which, if both individuals have the same preference, may give rise to a severe sexual conflict. Here we tested the hypothesis that gender choice could be influenced by mating history, using the freshwater snail, Physa acuta. We recorded the copulatory behaviour of 240 pairs composed of a focal individual and a partner, each either short- or long-isolated. We found that the time to the first copulation was unaffected by isolation status, suggesting that first contacts in this species are random processes. In contrast, the duration of copulations and the frequency of rejection behaviours suggested that individual gender preference switches from male biased to female biased as isolation increases. In addition, snails rejected copulations more frequently when presented to a partner with the same isolation status. Reciprocity, measured as the rate of gender swapping between the first and second copulations, was high irrespective of gender status. We suggest possible evolutionary causes for this gender preference switch and discuss its potential importance in natural population as well as its consequences for the maintenance of hermaphroditism
Resumo:
Plants attacked by herbivores have evolved different strategies that fend off their enemies. Insect eggs deposited on leaves have been shown to inhibit further oviposition through visual or chemical cues. In some plant species, the volatile methyl salicylate (MeSA) repels gravid insects but whether it plays the same role in the model species Arabidopsis thaliana is currently unknown. Here we showed that Pieris brassicae butterflies laid fewer eggs on Arabidopsis plants that were next to a MeSA dispenser or on plants with constitutively high MeSA emission than on control plants. Surprisingly, the MeSA biosynthesis mutant bsmt1-1 treated with egg extract was still repellent to butterflies when compared to untreated bsmt1-1. Moreover, the expression of BSMT1 was not enhanced by egg extract treatment but was induced by herbivory. Altogether, these results provide evidence that the deterring activity of eggs on gravid butterflies is independent of MeSA emission in Arabidopsis, and that MeSA might rather serve as a deterrent in plants challenged by feeding larvae.
Resumo:
1. Sex differences in levels of parasite infection are a common rule in a wide range of mammals, with males usually more susceptible than females. Sex-specific exposure to parasites, e.g. mediated through distinct modes of social aggregation between and within genders, as well as negative relationships between androgen levels and immune defences are thought to play a major role in this pattern. 2. Reproductive female bats live in close association within clusters at maternity roosts, whereas nonbreeding females and males generally occupy solitary roosts. Bats represent therefore an ideal model to study the consequences of sex-specific social and spatial aggregation on parasites' infection strategies. 3. We first compared prevalence and parasite intensities in a host-parasite system comprising closely related species of ectoparasitic mites (Spinturnix spp.) and their hosts, five European bat species. We then compared the level of parasitism between juvenile males and females in mixed colonies of greater and lesser mouse-eared bats Myotis myotis and M. blythii. Prevalence was higher in adult females than in adult males stemming from colonial aggregations in all five studied species. Parasite intensity was significantly higher in females in three of the five species studied. No difference in prevalence and mite numbers was found between male and female juveniles in colonial roosts. 4. To assess whether observed sex-biased parasitism results from differences in host exposure only, or, alternatively, from an active, selected choice made by the parasite, we performed lab experiments on short-term preferences and long-term survival of parasites on male and female Myotis daubentoni. When confronted with adult males and females, parasites preferentially selected female hosts, whereas no choice differences were observed between adult females and subadult males. Finally, we found significantly higher parasite survival on adult females compared with adult males. 5. Our study shows that social and spatial aggregation favours sex-biased parasitism that could be a mere consequence of an active and adaptive parasite choice for the more profitable host.
Resumo:
This study describes a task that combines random searching with goal directed navigation. The testing was conducted on a circular elevated open field (80 cm in diameter), with an unmarked target area (20 cm in diameter) in the center of 1 of the 4 quadrants. Whenever the rat entered the target area, the computerized tracking system released a pellet to a random point on the open field. Rats were able to learn the task under light and in total darkness, and on a stable or a rotating arena. Visual information was important in light, but idiothetic information became crucial in darkness. Learning of a new position was quicker under light than in total darkness on a rotating arena. The place preference task should make it possible to study place cells (PCs) when the rats use an allothetic (room frame) or idiothetic (arena frame) representation of space and to compare the behavioral response with the PCs' activity.
Resumo:
One aspect of person-job fit reflects congruence between personal preferences and job design; as congruence increases so should satisfaction. We hypothesized that power distance would moderate whether fit is related to satisfaction with degree of job formalization. We obtained measures of job-formalization, fit and satisfaction, as well as organizational commitment from employees (n = 772) in a multinational firm with subsidiaries in six countries. Confirming previous findings, individuals from low power-distance cultures were most satisfied with increasing fit. However, the extent to which individuals from high power-distance cultures were satisfied did not necessarily depend on increasing fit, but mostly on whether the degree of formalization received was congruent to cultural norms. Irrespective of culture, satisfaction with formalization predicted a broad measure of organizational commitment. Apart from our novel extension of fit theory, we show how moderation can be tested in the context of polynomial response surface regression and how specific hypotheses can be tested regarding different points on the response surface.
Resumo:
Local adaptation of populations requires some degree of spatio-temporal isolation. Previous studies of the two dung fly species Scathophaga stercoraria and Sepsis cynipsea have revealed low levels of geographic and altitudinal genetic differentiation in quantitative life history and morphological traits, but instead high degrees of phenotypic plasticity. These patterns suggest that gene flow is extensive despite considerable geographic barriers and large spatio-temporal variation in selection on body size and related traits. In this study we addressed this hypothesis by investigating genetic differentiation of dung fly populations throughout Switzerland based on the same 10 electrophoretic loci in each species. Overall, we found no significant geographic differentiation of populations for either species. This is inconsistent with the higher rates of gene flow expected due to better flying capacity of the larger S. stercoraria. However, heterozygote deficiencies within populations indicated structuring on a finer scale, seen for several loci in S. cynipsea, and for the locus PGM (Phosphoglucomutase) in S. stercoraria. Additionally, S. cynipsea showed a tendency towards a greater gene diversity at higher altitudes, mediated primarily by the locus MDH (malate dehydrogenase), at which a second allele was only present in populations above 1000 m. This may be caused by increased environmental stress at higher altitudes in this warm-adapted species. MDH might thus be a candidate locus subject to thermal selection in this species, but this remains to be corroborated by direct evidence. In S. stercoraria, no altitudinal variation was found.
Resumo:
Mutualism often involves reciprocal exploitation due to individual selection for increased benefits even at the expense of the partner. Therefore, stability and outcomes of such interactions crucially depend on cost limitation mechanisms. In the plant, pollinator /seed predator interaction between Silene latifolia (Caryophyllaceae) and Hadena bicruris (Lepidoptera: Noctuidae), moths generate pollination benefits as adults but impose seed predation costs as larvae. We examined whether floral morphology limits over-exploitation by constraining oviposition site. Oviposition site varies naturally inside vs. outside the corolla tube, but neither its determinants nor its effect on the interaction have been investigated. In a common garden with plants originating from eight populations, corolla tube length predicted oviposition site, but not egg presence or pollination efficiency, suggesting that long corolla tubes constrain the moth to lay eggs on petals. Egg position was also predicted by the combined effect of corolla tube and moth ovipositor lengths, with shorter ovipositor than corolla tube resulting in higher probability for eggs outside. Egg position on a given plant was repeatable over different exposure nights. When egg position was experimentally manipulated, eggs placed on the petal resulted in significantly fewer successful fruit attacks compared with eggs placed inside the corolla tube, suggesting differences in egg/larval mortality. Egg position also differently affected larval mass, fruit mass and fruit development. Our results indicate that constraining oviposition site through a long corolla tube reduces seed predation costs suffered by the plant without negatively affecting pollination efficiency and, hence may act to limit over-exploitation. However, the net effects of corolla tube depth variation on this interaction may fluctuate with extrinsic factors affecting egg mortality, and with patterns of gene flow affecting trait matching between the interacting species. The intermediate fitness costs incurred by both plant and insect associated with the different egg positions may reduce selective pressures for this interaction to evolve towards antagonism, favouring instead a mutualistic outcome. While a role for oviposition site variation in cost limitation is a novel finding in this system, it may apply more generally also to other mutualisms involving pollinating seed predators.
Resumo:
Issue ownership theory argues that when a voter considers a party to be the most competent amongst others to deal with an issue (that is, the party "owns" the issue), chances are the voter will vote for that party. Recent work has shown that perceptions of issue ownership are dynamic: they are affected by the media coverage of party messages. However, based on the broad literature on partisan bias, we predict that parties' efforts to change issue ownership perceptions will have a difficult time breaching the perceptual screen created by a voter's party preference. Using two separate experiments with a similar design we show that the effect of partisan issue messages on issue competence is moderated by party preference. The effect of issue messages is reinforced when people already like a party, and blocked when people dislike a party.
Resumo:
1. Accumulating evidence indicates that plant resistance against above-ground herbivores can be affected by the presence of arbuscular mycorrhizal fungi (AMF) in association with the host plant. Little is known, however, about how AMF composition can influence herbivore choice to feed on a particular plant. 2. Unravelling the preference-performance hypothesis in a multitrophic context is needed to expand our knowledge of complex multitrophic interactions in natural systems. If given mycorrhizal fungal genotypes increase attractiveness for a herbivore (reduced plant resistance), then the benefits of increased unpalatability provided by the mycorrhizal fungi (increased plant resistance) might be outweighed by the increased herbivore recruitment. 3. This was addressed by designing three experiments to test the effects of different AMF genotypes, inoculated either alone or in combination, to measure intraspecific AMF effects on plant resistance and insect herbivore preference. Using strawberry (Fragaria vesca L.) plants that were colonised by eight different combinations of Rhizophagus irregularis isolates, we measured effects on plant growth, insect growth and survival, as well as feeding preferences of a generalist herbivore caterpillar (Spodoptera littoralis Boisduval). 4. Overall, it was found that: (i) AMF influenced plant resistance in an AMF genotype-specific manner; (ii) some AMF inoculations decreased insect performance; (iii) insects preferentially chose to feed more on leaves originating from non-mycorrhizal plants; but also that (iv) in a whole plant bioassay, insects preferentially chose the biggest plant, regardless of their mycorrhizal status. 5. Therefore, AMF-mediated trade-offs between growth and resistance against herbivores have been shown. Such trade-offs, particularly driven by plant attractiveness to herbivores, buffer the positive effects of the mycorrhizal symbiosis on enhanced plant growth.
Resumo:
When colonizing a new habitat, populations must adapt their sexual behaviour to new ecological constraints. Because caves display drastically different conditions from surface habitats and cave animals are deprived from visual information, hypogean populations are expected to have modified their mate preference and signalling behaviour after cave colonization. Here, we experimentally examined the female preference and the sexual behaviour of brook newts Calotriton asper from different cave and river populations, either in light or in darkness. Our results suggest that females prefer large individuals in both hypogean and epigean populations, but that this preference is only expressed in the light conditions of their native habitat. Hence, some mate choice criteria would be maintained across genetically divergent populations and throughout dissimilar habitats. However, this sexual behaviour is likely to be expressed via a different sensory pathway in the different habitats, suggesting that a sensory shift has occurred in cave populations, enabling animals to communicate through a non-visual channel.
Resumo:
Plants have evolved exquisite ways to detect their enemies and are able to induce defenses responses tailored to their specific aggressors. Insect eggs deposited on a leaf represent a future threat as larvae hatching from the egg will ultimately feed on the plant. Although direct and indirect defenses towards oviposition have been documented, our knowledge of the molecular changes triggered by egg deposition is limited. Using a whole-genome microarray, we recently analyzed the expression profile of Arabidopsis thaliana leaves after oviposition by two pierid butterflies. Eggs laid by the large white Pieris brassicae modified the expression of hundreds of genes. The transcript signature included defense and stress-related genes that were also induced in plants experiencing localized cell death. Further analyses revealed that cellular changes associated with a hypersensitive response occur at the site of egg deposition and that they are triggered by egg-derived elicitors. Our study brings molecular evidence for previous observations of oviposition-induced necrosis in other plant species and might illustrate a direct defense of the plant against the egg. In this addendum, we discuss the relevance of the oviposition-induced gene expression changes and the possibility that plants use eggs as cues to anticipate their enemies.