2 resultados para Output voltage regulation

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Life on earth is subject to the repeated change between day and night periods. All organisms that undergo these alterations have to anticipate consequently the adaptation of their physiology and possess an endogenous periodicity of about 24 hours called circadian rhythm from the Latin circa (about) and diem (day). At the molecular level, virtually all cells of an organism possess a molecular clock which drives rhythmic gene expression and output functions. Besides altered rhythmicity in constant conditions, impaired clock function causes pathophysiological conditions such as diabetes or hypertension. These data unveil a part of the mechanisms underlying the well-described epidemiology of shift work and highlight the function of clock-driven regulatory mechanisms. The post-translational modification of proteins by the ubiquitin polypeptide is a central mechanism to regulate their stability and activity and is capital for clock function. Similarly to the majority of biological processes, it is reversible. Deubiquitylation is carried out by a wide variety of about ninety deubiquitylating enzymes and their function remains poorly understood, especially in vivo. This class of proteolytic enzymes is parted into five families including the Ubiquitin-Specific Proteases (USP), which is the most important with about sixty members. Among them, the Ubiquitin-Specific Protease 2 (Usp2) gene encodes two protein isoforms, USP2-45 and USP2-69. The first is ubiquitously expressed under the control of the circadian clock and displays all features of core clock genes or its closest outputs effectors. Additionally, Usp2-45 was also found to be induced by the mineralocorticoid hormone aldosterone and thought to participate in Na+ reabsorption and blood pressure regulation by Epithelial Na+ Channel ENaC in the kidneys. During my thesis, I aimed to characterize the role of Usp2 in vivo with respect to these two areas, by taking advantage of a total constitutive knockout mouse model. In the first project I aimed to validate the role of USP2-45 in Na+ homeostasis and blood pressure regulation by the kidneys. I found no significant alterations of diurnal Na+ homeostasis and blood pressure in these mice, indicating that Usp2 does not play a substantial role in this process. In urine analyses, we found that our Usp2-KO mice are actually hypercalciuric. In a second project, I aimed to understand the causes of this phenotype. I found that the observed hypercalciuria results essentially from intestinal hyperabsorption. These data reveal a new role for Usp2 as an output effector of the circadian clock in dietary Ca2+ metabolism in the intestine.