15 resultados para Output Multipliers
em Université de Lausanne, Switzerland
Resumo:
Life on earth is subject to the repeated change between day and night periods. All organisms that undergo these alterations have to anticipate consequently the adaptation of their physiology and possess an endogenous periodicity of about 24 hours called circadian rhythm from the Latin circa (about) and diem (day). At the molecular level, virtually all cells of an organism possess a molecular clock which drives rhythmic gene expression and output functions. Besides altered rhythmicity in constant conditions, impaired clock function causes pathophysiological conditions such as diabetes or hypertension. These data unveil a part of the mechanisms underlying the well-described epidemiology of shift work and highlight the function of clock-driven regulatory mechanisms. The post-translational modification of proteins by the ubiquitin polypeptide is a central mechanism to regulate their stability and activity and is capital for clock function. Similarly to the majority of biological processes, it is reversible. Deubiquitylation is carried out by a wide variety of about ninety deubiquitylating enzymes and their function remains poorly understood, especially in vivo. This class of proteolytic enzymes is parted into five families including the Ubiquitin-Specific Proteases (USP), which is the most important with about sixty members. Among them, the Ubiquitin-Specific Protease 2 (Usp2) gene encodes two protein isoforms, USP2-45 and USP2-69. The first is ubiquitously expressed under the control of the circadian clock and displays all features of core clock genes or its closest outputs effectors. Additionally, Usp2-45 was also found to be induced by the mineralocorticoid hormone aldosterone and thought to participate in Na+ reabsorption and blood pressure regulation by Epithelial Na+ Channel ENaC in the kidneys. During my thesis, I aimed to characterize the role of Usp2 in vivo with respect to these two areas, by taking advantage of a total constitutive knockout mouse model. In the first project I aimed to validate the role of USP2-45 in Na+ homeostasis and blood pressure regulation by the kidneys. I found no significant alterations of diurnal Na+ homeostasis and blood pressure in these mice, indicating that Usp2 does not play a substantial role in this process. In urine analyses, we found that our Usp2-KO mice are actually hypercalciuric. In a second project, I aimed to understand the causes of this phenotype. I found that the observed hypercalciuria results essentially from intestinal hyperabsorption. These data reveal a new role for Usp2 as an output effector of the circadian clock in dietary Ca2+ metabolism in the intestine.
Resumo:
Objective: Aim of post operative treatments after cardiac surgery is to avoid low cardiac output syndrome (LCOS). Levosimendan, a new inotrope agent, has been demonstrated in adult patient to be an effective treatment for this purpose when classical therapy is not effective. It shows a positive effect on cardiac output, with fewer adverse effects and lower mortality than with dopamine. There is very few data on its benefit in the paediatric population. The aim of this study is to evaluate the effect of levosimendan in cardiac children with LCOS.Methods: Retrospective analysis of 25 children hospitalised in our PICU after cardiac surgery that demonstrated LCOS not responding to classical catecholamine therapy and who received levosimendan as rescue. LCOS parameters like urine output, mixed venous oxygen saturation (SvO2), arterio-venous differences in CO2 (AVCO2) and plasmatic lactate were compared before therapy and at 12, 24, 48 and 72 hours after the beginning of the levosimendan infusion. We also analyzed the effect on the utilisation of amines (amine score), adverse events and mortality.Results: After the beginning of levosimendan infusion, urine output (3.1 vs 5.3ml/kg/h, p=0.003) and SVO2 (56 vs 64mmHg, p=0.001) increase significantly during first 72 hours and at the same time plasmatic lactate (2.6 vs 1.4 mmole/l, p<0.001), AVCO2 (11 vs 8 mmHg, p=0.002) and amine score (63 vs 39, p=0.007) decrease significantly. No side effects were noted during administration of levosimendan. In this group of patients, mortality was 0%.Conclusion: Levosimendan is an effective treatment in children after congenital heart surgery. Our study, with a greater sample of patient than other studies, confirms the improvement of cardiac output already shown in other paediatric studies.
Resumo:
In the recent years, kernel methods have revealed very powerful tools in many application domains in general and in remote sensing image classification in particular. The special characteristics of remote sensing images (high dimension, few labeled samples and different noise sources) are efficiently dealt with kernel machines. In this paper, we propose the use of structured output learning to improve remote sensing image classification based on kernels. Structured output learning is concerned with the design of machine learning algorithms that not only implement input-output mapping, but also take into account the relations between output labels, thus generalizing unstructured kernel methods. We analyze the framework and introduce it to the remote sensing community. Output similarity is here encoded into SVM classifiers by modifying the model loss function and the kernel function either independently or jointly. Experiments on a very high resolution (VHR) image classification problem shows promising results and opens a wide field of research with structured output kernel methods.
Resumo:
Some patients infected with human immunodeficiency virus (HIV) who are experiencing antiretroviral treatment failure have persistent improvement in CD4+ T cell counts despite high plasma viremia. To explore the mechanisms responsible for this phenomenon, 2 parameters influencing the dynamics of CD4+ T cells were evaluated: death of mature CD4+ T cells and replenishment of the CD4+ T cell pool by the thymus. The improvement in CD4+ T cells observed in patients with treatment failure was not correlated with spontaneous, Fas ligand-induced, or activation-induced T cell death. In contrast, a significant correlation between the improvement in CD4+ T cell counts and thymic output, as assessed by measurement of T cell receptor excision circles, was observed. These observations suggest that increased thymic output contributes to the dissociation between CD4+ T cell counts and viremia in patients failing antiretroviral therapy and support a model in which drug-resistant HIV strains may have reduced replication rates and pathogenicity in the thymus.
Resumo:
Neuropeptide Y (NPY) is a peptide with vasoconstrictor properties known to be present in the central nervous system as well as in sympathetic nerve endings and the adrenal medulla. The purposes of this study were to investigate in normotensive conscious rats the effects of nonpressor doses of NPY on cardiac output and regional blood flow distribution (using radiolabeled microspheres) as well as on plasma renin activity, plasma catecholamine and vasopressin levels. NPY (0.1 microgram/min) infused i.v. for 30 min modified neither blood pressure nor heart rate. Cardiac index was at comparable levels in NPY- as in vehicle-treated rats (17.7 +/- 1.6, n = 8, vs. 21.3 +/- 0.9 ml/min/100 g, n = 8, mean +/- S.E.M.). There was no significant difference in regional blood flow distribution between the two groups of rats, except for the large intestine (0.42 +/- 0.06 vs. 0.71 +/- 0.1 ml/min/g in NPY- and vehicle-treated rats, respectively, P less than .05). Basal plasma renin activity and catecholamine levels were not modified by NPY whereas plasma vasopressin levels were lower (P less than .05) in rats given NPY (0.76 +/- 0.3 pg/ml, n = 8) than in those having received the vehicle (2.2 +/- 0.4 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
In 1851 the French Social economist Auguste Ott discussed the problem of gluts and commercial crises, together with the issue of distributive justice between workers in co-operative societies. He did so by means of a 'simple reproduction scheme' sharing some features with modern intersectoral transactions tables, in particular in terms of their graphical representation. This paper presents Ott's theory of crises (which was based on the disappointment of expectations) and the context of his model, and discusses its peculiarities, supplying a new piece for the reconstruction of the prehistory of input-output analysis.
Resumo:
PURPOSE: To use measurement by cycling power meters (Pmes) to evaluate the accuracy of commonly used models for estimating uphill cycling power (Pest). Experiments were designed to explore the influence of wind speed and steepness of climb on accuracy of Pest. The authors hypothesized that the random error in Pest would be largely influenced by the windy conditions, the bias would be diminished in steeper climbs, and windy conditions would induce larger bias in Pest. METHODS: Sixteen well-trained cyclists performed 15 uphill-cycling trials (range: length 1.3-6.3 km, slope 4.4-10.7%) in a random order. Trials included different riding position in a group (lead or follow) and different wind speeds. Pmes was quantified using a power meter, and Pest was calculated with a methodology used by journalists reporting on the Tour de France. RESULTS: Overall, the difference between Pmes and Pest was -0.95% (95%CI: -10.4%, +8.5%) for all trials and 0.24% (-6.1%, +6.6%) in conditions without wind (<2 m/s). The relationship between percent slope and the error between Pest and Pmes were considered trivial. CONCLUSIONS: Aerodynamic drag (affected by wind velocity and orientation, frontal area, drafting, and speed) is the most confounding factor. The mean estimated values are close to the power-output values measured by power meters, but the random error is between ±6% and ±10%. Moreover, at the power outputs (>400 W) produced by professional riders, this error is likely to be higher. This observation calls into question the validity of releasing individual values without reporting the range of random errors.
Resumo:
Objective: Respiratory assistance with nasal continuous positive airway pressure (n-CPAP) is an effective treatment in premature newborns presenting respiratory distress. The aim of the study was to depict cardiac function, systemic (Qs) and pulmonary output (Qp) by echocardiography in stable premature infants requiring prolonged n-CPAP. Our hypothesis was that n-CPAP could reduce pulmonary blood flow. Patients and methods: All premature infants < 32 weeks gestation, > 7 days-old, requiring n-CPAP without severe respiratory compromise nor need for additional oxygen were prospectively included. Every patient had a first echocardiography while on n-CPAP. N-CPAP was then discontinued for two hours and a second echocardiography was performed. Results: 17 premature infants were included. Mean gestational age was 28 ± 2 weeks and mean weight 1.1 ± 0.3 kg. Following retrieval of n-CPAP we observed an increase in Qp of 53 ml/kg/min (95% CI 19-87 ml/kg/min), but no significant change in Qs. Consecutively a significant increase in Qp/Qs ratio of 16% was found (95% CI 7-29%). Conclusions: Nasal continuous positive airway pressure has hemodynamic effects in preterm infants in stable pulmonary and cardiac conditions. It reduces pulmonary output without interference with systemic output.
Resumo:
Résumé: Output, inflation and interest rates are key macroeconomic variables, in particular for monetary policy. In modern macroeconomic models they are driven by random shocks which feed through the economy in various ways. Models differ in the nature of shocks and their transmission mechanisms. This is the common theme underlying the three essays of this thesis. Each essay takes a different perspective on the subject: First, the thesis shows empirically how different shocks lead to different behavior of interest rates over the business cycle. For commonly analyzed shocks (technology and monetary policy errors), the patterns square with standard models. The big unknown are sources of inflation persistence. Then the thesis presents a theory of monetary policy, when the central bank can better observe structural shocks than the public. The public will then seek to infer the bank's extra knowledge from its policy actions and expectation management becomes a key factor of optimal policy. In a simple New Keynesian model, monetary policy becomes more concerned with inflation persistence than otherwise. Finally, the thesis points to the huge uncertainties involved in estimating the responses to structural shocks with permanent effects.
Resumo:
Electrical impedance tomography (EIT) is a non-invasive imaging technique that can measure cardiac-related intra-thoracic impedance changes. EIT-based cardiac output estimation relies on the assumption that the amplitude of the impedance change in the ventricular region is representative of stroke volume (SV). However, other factors such as heart motion can significantly affect this ventricular impedance change. In the present case study, a magnetic resonance imaging-based dynamic bio-impedance model fitting the morphology of a single male subject was built. Simulations were performed to evaluate the contribution of heart motion and its influence on EIT-based SV estimation. Myocardial deformation was found to be the main contributor to the ventricular impedance change (56%). However, motion-induced impedance changes showed a strong correlation (r = 0.978) with left ventricular volume. We explained this by the quasi-incompressibility of blood and myocardium. As a result, EIT achieved excellent accuracy in estimating a wide range of simulated SV values (error distribution of 0.57 ± 2.19 ml (1.02 ± 2.62%) and correlation of r = 0.996 after a two-point calibration was applied to convert impedance values to millilitres). As the model was based on one single subject, the strong correlation found between motion-induced changes and ventricular volume remains to be verified in larger datasets.
Resumo:
Nitric oxide (NO) produced by inducible NO synthase (iNOS, NOS-2) is an important component of the macrophage-mediated immune defense toward numerous pathogens. Murine macrophages produce NO after cytokine activation, whereas, under similar conditions, human macrophages produce low levels or no NO at all. Although human macrophages can express iNOS mRNA and protein on activation, whether they possess the complete machinery necessary for NO synthesis remains controversial. To define the conditions necessary for human monocytes/macrophages to synthesize NO when expressing a functional iNOS, the human monocytic U937 cell line was engineered to synthesize this enzyme, following infection with a retroviral expression vector containing human hepatic iNOS (DFGiNOS). Northern blot and Western blot analysis confirmed the expression of iNOS in transfected U937 cells both at the RNA and protein levels. NOS enzymatic activity was demonstrated in cell lysates by the conversion of L-[3H]arginine into L-[3H]citrulline and the production of NO by intact cells was measured by nitrite and nitrate accumulation in culture supernatants. When expressing functional iNOS, U937 cells were capable of releasing high levels of NO. NO production was strictly dependent on supplementation of the culture medium with tetrahydrobiopterin (BH4) and was not modified by stimulation of the cells with different cytokines. These observations suggest that (1) human monocytic U937 cells contain all the cofactors necessary for NO synthesis, except BH4 and (2) the failure to detect NO in cytokine-stimulated untransfected U937 cells is not due to the presence of a NO-scavenging molecule within these cells nor to the destabilization of iNOS protein. DFGiNOS U937 cells represent a valuable human model to study the role of NO in immunity toward tumors and pathogens.