77 resultados para Other Cell and Developmental Biology

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishing the links between phenotype and genotype is of great importance for resolving key questions about the evolution, maintenance and adaptive function of phenotypic variation. Bird colouration is one of the most studied systems to investigate the role of natural and sexual selection in the evolution of phenotypic diversity. Given the recent advances in molecular tools that allow discovering genetic polymorphisms and measuring gene and protein expression levels, it is timely to review the literature on the genetics of bird colouration. The present study shows that melanin-based colour phenotypes are often associated with mutations at melanogenic genes. Differences in melanin-based colouration are caused by switches of eumelanin to pheomelanin production or by changes in feather keratin structure, melanoblast migration and differentiation, as well as melanosome structure. Similar associations with other types of colourations are difficult to establish, because our knowledge about the molecular genetics of carotenoid-based and structural colouration is quasi inexistent. This discrepancy stems from the fact that only melanin-based colouration shows pronounced heritability estimates, i.e. the resemblance between related individuals is usually mainly explained by genetic factors. In contrast, the expression of carotenoid-based colouration is phenotypically plastic with a high sensitivity to variation in environmental conditions. It therefore appears that melanin-based colour traits are prime systems to understand the genetic basis of phenotypic variation. In this context, birds have a great potential to bring us to new frontiers where many exciting discoveries will be made on the genetics of phenotypic traits, such as colouration. In this context, a major goal of our review is to suggest a number of exciting future avenues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decapentaplegic (Dpp), the fly homolog of the secreted mammalian BMP2/4 signaling molecules, is involved in almost all aspects of fly development. Dpp has critical functions at all developmental stages, from patterning of the eggshell to the determination of adult intestinal stem cell identity. Here, we focus on recent findings regarding the transcriptional regulatory logic of the pathway, on a new feedback regulator, Pentagone, and on Dpp's roles in scaling and growth of the Drosophila wing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are lipid-activated transcription factors that belong to the steroid/thyroid/retinoic acid receptor superfamily. All their characterized target genes encode proteins that participate in lipid homeostasis. The recent finding that antidiabetic thiazolidinediones and adipogenic prostanoids are ligands of one of the PPARs reveals a novel signaling pathway that directly links these compounds to processes involved in glucose homeostasis and lipid metabolism including adipocyte differentiation. A detailed understanding of this pathway could designate PPARs as targets for the development of novel efficient treatments for several metabolic disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The skin is privileged because several skin-derived stem cells (epithelial stem cells from epidermis and its appendages, mesenchymal stem cells from dermis and subcutis, melanocyte stem cells) can be efficiently captured for therapeutic use. Main indications remain the permanent coverage of extensive third degree burns and healing of chronic cutaneous wounds, but recent advances in gene therapy technology open the door to the treatment of disabling inherited skin diseases with genetically corrected keratinocyte stem cells. Therapeutic skin stem cells that were initially cultured in research or hospital laboratories must be produced according strict regulatory guidelines, which ensure patients and medical teams that the medicinal cell products are safe, of constant quality and manufactured according to state-of-the art technology. Nonetheless, it does not warrant clinical efficacy and permanent engraftment of autologous stem cells remains variable. There are many challenges ahead to improve efficacy among which to keep telomere-dependent senescence and telomere-independent senescence (clonal conversion) to a minimum in cell culture and to understand the cellular and molecular mechanisms implicated in engraftment. Finally, medicinal stem cells are expansive to produce and reimbursement of costs by health insurances is a major concern in many countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basal cell carcinoma (BCC) of the skin, the most common malignancy in individuals of mixed European descent, is increasing in incidence due to an aging population and sun exposure habits. The realization that aberrant activation of Hedgehog signaling is a pathognomonic feature of BCC development has opened the way for exciting progress toward understanding BCC biology and translation of this knowledge to the clinic. Genetic mouse models closely mimicking human BCCs have provided answers about the tumor cell of origin, and inhibition of Hedgehog signaling is emerging as a potentially useful targeted therapy for patients with advanced or multiple BCCs that have hitherto lacked effective treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally.The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. RESULTS: In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. CONCLUSION: These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bleeding disorder Bernard-Soulier syndrome (BSS) is caused by mutations in the genes coding for the platelet glycoprotein GPIb/IX receptor. The septin SEPT5 is important for active membrane movement such as vesicle trafficking and exocytosis in non-dividing cells (i.e. platelets, neurons). We report on a four-year-old boy with a homozygous deletion comprising not only glycoprotein Ibβ (GP1BB) but also the SEPT5 gene, located 5' to GP1BB. He presented with BSS, cortical dysplasia (polymicrogyria), developmental delay, and platelet secretion defect. The homozygous deletion of GP1BB and SEPT5, which had been identified by PCR analyses, was confirmed by Southern analyses and denaturing HPLC (DHPLC). The parents were heterozygous for this deletion. Absence of GPIbβ and SEPT5 proteins in the patient's platelets was illustrated using transmission electron microscopy. Besides decreased GPIb/IX expression, flow cytometry analyses revealed impaired platelet granule secretion. Because the bleeding disorder was extremely severe, the boy received bone marrow transplantation (BMT) from a HLA-identical unrelated donor. After successful engraftment of BMT, he had no more bleeding episodes. Interestingly, also his mental development improved strikingly after BMT. This report describes for the first time a patient with SEPT5 deficiency presenting with cortical dysplasia (polymicrogyria), developmental delay, and platelet secretion defect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genus Silene, studied by Darwin, Mendel and other early scientists, is re-emerging as a system for studying interrelated questions in ecology, evolution and developmental biology. These questions include sex chromosome evolution, epigenetic control of sex expression, genomic conflict and speciation. Its well-studied interactions with the pathogen Microbotryum has made Silene a model for the evolution and dynamics of disease in natural systems, and its interactions with herbivores have increased our understanding of multi-trophic ecological processes and the evolution of invasiveness. Molecular tools are now providing new approaches to many of these classical yet unresolved problems, and new progress is being made through combining phylogenetic, genomic and molecular evolutionary studies with ecological and phenotypic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mantle cell lymphoma is a mature lymphoid neoplasm characterized by the t(11;14)(q13;q32) and cyclin D1 overexpression. SOX11 is a transcription factor commonly overexpressed in these tumors but absent in most other mature B-cell lymphomas whose function is not well understood. Experimental studies have shown that silencing of SOX11 in mantle cell lymphoma cells promotes the shift from a mature B cell into an early plasmacytic differentiation phenotype, suggesting that SOX11 may contribute to tumor development by blocking the B-cell differentiation program. The relationship between SOX11 expression and terminal B-cell differentiation in primary mantle cell lymphoma and its relationship to the plasmacytic differentiation observed in occasional cases is not known. In this study we have investigated the terminal B-cell differentiation phenotype in 60 mantle cell lymphomas, 41 SOX11-positive and 19 SOX11-negative. Monotypic plasma cells and lymphoid cells with plasmacytic differentiation expressing cyclin D1 were observed in 7 (37%) SOX11-negative but in none of 41 SOX11-positive mantle cell lymphomas (P<0.001). Intense cytoplasmic expression of a restricted immunoglobulin light chain was significantly more frequent in SOX11-negative than -positive tumors (58 vs 13%) (P=0.001). Similarly, BLIMP1 and XBP1 expression was also significantly more frequent in SOX11-negative than in -positive cases (83 vs 34% and 75 vs 11%, respectively) (P=0.001). However, no differences in the expression of IRF4/MUM1 were observed among these subtypes of mantle cell lymphoma. In conclusion, these results indicate that SOX11-negative mantle cell lymphoma may be a particular subtype of this tumor characterized by more frequent morphological and immunophenotypic terminal B-cell differentiation features that may be facilitated by the absence of SOX11 transcription factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to imbalance in genetic material contribution, gynecological samples collected following a sexual assault are challenging to process in order to resolve the male contributor's DNA profile. We set up a new and fast procedure for the recovery and separation of cells from cotton swabs, or other supports. Using spermatozoa specific CD52 antibody coupled to magnetic beads along with magnetic columns, this procedure was first developed and optimized by flow cytometry. It allows the recovery of two enriched cell fractions: a sperm fraction, mostly enriched with the alleged offender's spermatozoa, and a non-sperm fraction, mostly enriched with cells from the victim. Processing fresh as well as six months old mock samples, made of buccal swabs loaded with sperm dilutions, resulted in full single NGM SElect DNA profiles of the sperm donors, respectively the epithelial cells donors, for the sperm and the non-sperm fractions. Untreated duplicate samples processed in parallel only provided the autosomal DNA profiles of the epithelial cells donors. This new procedure can be rapidly tested and adopted by forensic laboratories worldwide as it uses material already commercially available. Moreover it can be easily automated with existing platform, and could therefore provide a mean to rapidly reduce existing backlogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we evaluated stimulation of the angiotensin type 2 receptor (AT2R) by the selective non-peptide agonist Compound 21 (C21) as a novel therapeutic concept for the treatment of multiple sclerosis using the model of experimental autoimmune encephalomyelitis (EAE) in mice. C57BL-6 mice were immunized with myelin-oligodendrocyte peptide and treated for 4 weeks with C21 (0.3 mg/kg/day i.p.). Potential effects on myelination, microglia and T-cell composition were estimated by immunostaining and FACS analyses of lumbar spinal cords. The in vivo study was complemented by experiments in aggregating brain cell cultures and microglia in vitro. In the EAE model, treatment with C21 ameliorated microglia activation and decreased the number of total T-cells and CD4+ T-cells in the spinal cord. Fluorescent myelin staining of spinal cords further revealed a significant reduction in EAE-induced demyelinated areas in lumbar spinal cord tissue after AT2R stimulation. C21-treated mice had a significantly better neurological score than vehicle-treated controls. In aggregating brain cell cultures challenged with lipopolysaccharide (LPS) plus interferon-γ (IFNγ), AT2R stimulation prevented demyelination, accelerated re-myelination and reduced the number of microglia. Cytokine synthesis and nitric oxide production by microglia in vitro were significantly reduced after C21 treatment. These results suggest that AT2R stimulation protects the myelin sheaths in autoimmune central nervous system inflammation by inhibiting the T-cell response and microglia activation. Our findings identify the AT2R as a potential new pharmacological target for demyelinating diseases such as multiple sclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.