37 resultados para Organophosphorus compounds.
em Université de Lausanne, Switzerland
Resumo:
Aggregating brain cell cultures of fetal rat telencephalon can be grown in a chemically defined medium for extended periods of time. After a phase of intense mitotic activity, these three-dimensional cell cultures undergo extensive morphological differentiation, including synaptogenesis and myelination. To study the developmental toxicity of organophosphorus compounds (OP), aggregating brain cell cultures were treated with parathion. Protein content and cell type-specific enzyme activities were not affected up to a concentration of 10(5) M. Gliosis, characterized by an increased staining for glial fibrillary acidic protein (GFAP), was observed in immature and in differentiated cells. In contrast, uridine incorporation and myelin basic protein (MBP) immunoreactivity revealed strong differences in sensitivity between these two developmental stages. These results are in agreement with the view that in vivo the development-dependent toxicity is not only due to changes in hepatic detoxification, but also to age-related modifications in the susceptibility of the different populations of brain cells. Furthermore, they underline the usefulness of histotypic culture systems with a high developmental potential, such as aggregating brain cell cultures, and stress the importance of applying a large range of criteria for testing the developmental toxicity of potential neurotoxicants.
Resumo:
Uveal melanoma metastases occur most commonly in the liver. Given the 50% mortality rate in patients at high risk of developing liver metastases, we tested an adjuvant intra-arterial hepatic (i.a.h.) chemotherapy with fotemustine after proton beam irradiation of the primary tumour. We treated 22 high-risk patients with adjuvant i.a.h. fotemustine. Planned treatment duration was 6 months, starting with four weekly doses of 100 mg/m(2), and after a 5-week rest, repeated every 3 weeks. The survival of this patient group was compared with that of a 3 : 1 matched control group randomly selected from our institutional database. Half of the patients experienced > or =grade 3 hepatotoxicity (one patient developing cholangitis 8 years later). Catheter-related complications occurred in 18%. With a median follow-up of 4.6 years for the fotemustine group and 8.5 years for the control group, median overall survival was 9 years [95% confidence interval (CI) 2.2-12.7] and 7.4 years (95% CI 5.4-12.7; P=0.5), respectively, with 5-year survival rates of 75 and 56%. Treatment with adjuvant i.a.h. fotemustine is feasible. However, toxicities are important. Although our data suggest a survival benefit, it was not statistically significant. Confirming such a benefit would require a large, internationally coordinated, prospective randomized trial.
Resumo:
A simple wipe sampling procedure was developed for the surface contamination determination of ten cytotoxic drugs: cytarabine, gemcitabine, methotrexate, etoposide phosphate, cyclophosphamide, ifosfamide, irinotecan, doxorubicin, epirubicin and vincristine. Wiping was performed using Whatman filter paper on different surfaces such as stainless steel, polypropylene, polystyrol, glass, latex gloves, computer mouse and coated paperboard. Wiping and desorption procedures were investigated: The same solution containing 20% acetonitrile and 0.1% formic acid in water gave the best results. After ultrasonic desorption and then centrifugation, samples were analysed by a validated liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring mode. The whole analytical strategy from wipe sampling to LC-MS/MS analysis was evaluated to determine quantitative performance. The lowest limit of quantification of 10 ng per wiping sample (i.e. 0.1 ng cm(-2)) was determined for the ten investigated cytotoxic drugs. Relative standard deviation for intermediate precision was always inferior to 20%. As recovery was dependent on the tested surface for each drug, a correction factor was determined and applied for real samples. The method was then successfully applied at the cytotoxic production unit of the Geneva University Hospitals pharmacy.
Resumo:
BACKGROUND: Exclusive liver metastases occur in up to 40% of patients with uveal melanoma associated with a median survival of 2-7 months. Single agent response rates with commonly available chemotherapy are below 10%. We have investigated the use of fotemustine via direct intra-arterial hepatic (i.a.h.) administration in patients with uveal melanoma metastases. PATIENTS AND METHODS: A total of 101 patients from seven centers were treated with i.a.h. fotemustine, administered intra-arterially weekly for a 4-week induction period, and then as a maintenance treatment every 3 weeks until disease progression, unacceptable toxicity or patient refusal. RESULTS: A median of eight fotemustine infusions per patient were delivered (range 1-26). Catheter related complications occurred in 23% of patients; however, this required treatment discontinuation in only 10% of the patients. The overall response rate was 36% with a median overall survival of 15 months and a 2-year survival rate of 29%. LDH, time between diagnosis and treatment start and gender were significant predictors of survival. CONCLUSIONS: Locoregional treatment with fotemustine is well tolerated and seems to improve outcome of this poor prognosis patient population. Median survival rates are among the longest reported and one-third of the patients are still alive at 2 years.
Resumo:
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) plays a key role in adipocyte differentiation and insulin sensitivity. Its synthetic ligands, the thiazolidinediones (TZD), are used as insulin sensitizers in the treatment of type 2 diabetes. These compounds induce both adipocyte differentiation in cell culture models and promote weight gain in rodents and humans. Here, we report on the identification of a new synthetic PPARgamma antagonist, the phosphonophosphate SR-202, which inhibits both TZD-stimulated recruitment of the coactivator steroid receptor coactivator-1 and TZD-induced transcriptional activity of the receptor. In cell culture, SR-202 efficiently antagonizes hormone- and TZD-induced adipocyte differentiation. In vivo, decreasing PPARgamma activity, either by treatment with SR-202 or by invalidation of one allele of the PPARgamma gene, leads to a reduction of both high fat diet-induced adipocyte hypertrophy and insulin resistance. These effects are accompanied by a smaller size of the adipocytes and a reduction of TNFalpha and leptin secretion. Treatment with SR-202 also dramatically improves insulin sensitivity in the diabetic ob/ob mice. Thus, although we cannot exclude that its actions involve additional signaling mechanisms, SR-202 represents a new selective PPARgamma antagonist that is effective both in vitro and in vivo. Because it yields both antiobesity and antidiabetic effects, SR-202 may be a lead for new compounds to be used in the treatment of obesity and type 2 diabetes.
Resumo:
PURPOSE: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. METHODS AND MATERIALS: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D(RPT)) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD(RPT) map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD(RPT). A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD(sum) to the spinal cord of a patient with a paraspinal tumor. RESULTS: The average voxel NTD(RPT) to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD(RPT) from RPT was 6.8 Gy. The combined therapy NTD(sum) to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD(sum) equal to the maximum tolerated dose of 50 Gy. CONCLUSIONS: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.
Resumo:
Ralstonia eutropha JMP134 possesses two sets of similar genes for degradation of chloroaromatic compounds, tfdCDEFB (in short: tfdI cluster) and tfdDII CII EII FII BII (tfdII cluster). The significance of two sets of tfd genes for the organism has long been elusive. Here, each of the tfd genes in the two clusters on the original plasmid pJP4 was replaced by double recombination with a gene fragment in which a kanamycin resistance gene was inserted into the respective tfd gene's reading frame. The insertion mutants were all tested for growth on 2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), and 3-chlorobenzoate (3-CBA). None of the tfdDII CII EII FII BII genes appeared to be essential for growth on 2,4-D or on 3-CBA. Mutations in tfdC, tfdD and tfdF also did not abolish but only retarded growth on 2,4-D, indicating that they were redundant to some extent as well. Of all tfd genes tested, only tfdE and tfdB were absolutely essential, and interruption of those two reading frames abolished growth on 2,4-D, 3-CBA ( tfdE only), and MCPA completely. Interestingly, strains with insertion mutations in the tfdI cluster and those in tfdDII, tfdCII, tfdEII and tfdBII were severely effected in their growth on MCPA, compared to the wild-type. This indicated that not only the tfdI cluster but also the tfdII cluster has an essential function for R. eutropha during growth on MCPA. In contrast, insertion mutation of tfdDII resulted in better growth of R. eutropha JMP134 on 3-CBA, which is most likely due to the prevention of toxic metabolite production in the absence of TfdDII activity.
Resumo:
The application of click chemistry to develop libraries of organometallic ruthenium-arene complexes with potential anticancer properties has been investigated. A series of ruthenium-imidazole-triazole complexes, with hydrophobic tails, were prepared from a common precursor via click chemistry. The tail could be attached to the ligand prior to coordination to the ruthenium complex were screened for cytotoxicity in tumourigenic and non-tumourigenic cell lines, and while the compounds were only moderately cytotoxic, good selectivity for tumourigenic cells were abserved.
Resumo:
Estimating the time since the last discharge of firearms and/or spent cartridges may be a useful piece of information in forensic firearm-related cases. The current approach consists of studying the diffusion of selected volatile organic compounds (such as naphthalene) released during the shooting using solid phase micro-extraction (SPME). However, this technique works poorly on handgun car-tridges because the extracted quantities quickly fall below the limit of detection. In order to find more effective solutions and further investigate the aging of organic gunshot residue after the discharge of handgun cartridges, an extensive study was carried out in this work using a novel approach based on high capacity headspace sorptive extraction (HSSE). By adopting this technique, for the first time 51 gunshot residue (GSR) volatile organic compounds could be simultaneously detected from fired handgun cartridge cases. Application to aged specimens showed that many of those compounds presented significant and complementary aging profiles. Compound-to-compound ratios were also tested and proved to be beneficial both in reducing the variability of the aging curves and in enlarging the time window useful in a forensic casework perspective. The obtained results were thus particularly promising for the development of a new complete forensic dating methodology.
Resumo:
The purpose of the workshop "Do Peroxisome Proliferating Compounds Pose a Hepatocarcinogenic Hazard to Humans?" was to provide a review of the current state of the science on the relationship between peroxisome proliferation and hepatocarcinogenesis. There has been much debate regarding the mechanism by which peroxisome proliferators may induce liver tumors in rats and mice and whether these events occur in humans. A primary goal of the workshop was to determine where consensus might be reached regarding the interpretation of these data relative to the assessment of potential human risks. A core set of biochemical and cellular events has been identified in the rodent strains that are susceptible to the hepatocarcinogenic effects of peroxisome proliferators, including peroxisome proliferation, increases in fatty acyl-CoA oxidase levels, microsomal fatty acid oxidation, excess production of hydrogen peroxide, increases in rates of cell proliferation, and expression and activation of the alpha subtype of the peroxisome proliferator-activated receptor (PPAR-alpha). Such effects have not been identified clinically in liver biopsies from humans exposed to peroxisome proliferators or in in vitro studies with human hepatocytes, although PPAR-alpha is expressed at a very low level in human liver. Consensus was reached regarding the significant intermediary roles of cell proliferation and PPAR-alpha receptor expression and activation in tumor formation. Information considered necessary for characterizing a compound as a peroxisome proliferating hepatocarcinogen include hepatomegaly, enhanced cell proliferation, and an increase in hepatic acyl-CoA oxidase and/or palmitoyl-CoA oxidation levels. Given the lack of genotoxic potential of most peroxisome proliferating agents, and since humans appear likely to be refractive or insensitive to the tumorigenic response, risk assessments based on tumor data may not be appropriate. However, nontumor data on intermediate endpoints would provide appropriate toxicological endpoints to determine a point of departure such as the LED10 or NOAEL which would be the basis for a margin-of-exposure (MOE) risk assessment approach. Pertinent factors to be considered in the MOE evaluation would include the slope of the dose-response curve at the point of departure, the background exposure levels, and variability in the human response.
Resumo:
Plant metabolic engineering has recently enabled the synthesis of a range of polyhydroxyalkanoates as well as a protein-based polymer. These novel compounds can be harvested from plants as a renewable source of environmentally friendly polymers or can be used to change the physical properties of plant products, such as fibres.
Resumo:
Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis.
Resumo:
AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.