5 resultados para Organic treatment
em Université de Lausanne, Switzerland
Resumo:
The permeability-glycoprotein efflux-transporter encoded by the multidrug resistance 1 (ABCB1) gene and the cytochromes P450 3A4/5 encoded by the CYP3A4/5 genes are known to interact in the transport and metabolism of many drugs. Recent data have shown that the CYP3A5 genotypes influence blood pressure and that permeability-glycoprotein activity might influence the activity of the renin-angiotensin system. Hence, these 2 genes may contribute to blood pressure regulation in humans. We analyzed the association of variants of the ABCB1 and CYP3A5 genes with ambulatory blood pressure, plasma renin activity, plasma aldosterone, endogenous lithium clearance, and blood pressure response to treatment in 72 families (373 individuals; 55% women; mean age: 46 years) of East African descent. The ABCB1 and CYP3A5 genes interact with urinary sodium excretion in their effect on ambulatory blood pressure (daytime systolic: P=0.05; nighttime systolic and diastolic: P<0.01), suggesting a gene-gene-environment interaction. The combined action of these genes is also associated with postproximal tubular sodium reabsorption, plasma renin activity, plasma aldosterone, and with an altered blood pressure response to the angiotensin-converting enzyme inhibitor lisinopril (P<0.05). This is the first reported association of the ABCB1 gene with blood pressure in humans and demonstration that genes encoding for proteins metabolizing and transporting drugs and endogenous substrates contribute to blood pressure regulation.
Resumo:
The wreck U Pezzo, excavated within the Saint Florent Gulf in northern Corsica was identified as the pink, Saint Etienne, a merchant ship which sank on January 31, 1769. In order to determine the composition of organic materials used to coat the hull or to waterproof different parts of the pink, a study of several samples, using molecular biomarker and carbon isotopic analysis, was initiated. The results revealed that the remarkable yellow coat, covering the outside planks of the ship's bottom under the water line, is composed of sulfur, tallow (of ox and not of cetacean origin) and black pitch which corresponds to a mixture called ``couroi'' or ``stuff'. Onboard ropes had been submitted to a tarring treatment with pitch. Hairs mixed with pitch were identified in samples collected between the two layers of the hull or under the sheathing planking. The study also provides a key model for weathering of pitch, as different degrees of degradation were found between the surface and the heart of several samples. Accordingly, molecular parameters for alteration were proposed. Furthermore novel mixed esters between terpenic and diterpenic alcohols and the free major fatty acids (C(14:0), C(16:0), C(18:0)) were detected in the yellow coat. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND AND OBJECTIVE: The in vivo implication of various cytochrome P450 (CYP) isoforms and of P-glycoprotein on methadone kinetics is unclear. We aimed to thoroughly examine the genetic factors influencing methadone kinetics and response to treatment. METHODS: Genotyping for CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, ABCB1, and UGT2B7 polymorphisms was performed in 245 patients undergoing methadone maintenance treatment. To assess CYP3A activity, the patients were phenotyped with midazolam. RESULTS: The patients with lower CYP3A activity presented higher steady-state trough (R,S)-methadone plasma levels (4.3, 3.0, and 2.3 ng/mL x mg for low, medium, and high activity, respectively; P = .0002). As previously reported, CYP2B6*6/*6 carriers had significantly higher trough (S)-methadone plasma levels (P = .0001) and a trend toward higher (R)-methadone plasma levels (P = .07). CYP2D6 ultrarapid metabolizers presented lower trough (R,S)-methadone plasma levels compared with the extensive or intermediate metabolizers (2.4 and 3.3 ng/mL x mg, respectively; P = .04), whereas CYP2D6 poor metabolizer status showed no influence. ABCB1 3435TT carriers presented lower trough (R,S)-methadone plasma levels (2.7 and 3.4 ng/mL . mg for 3435TT and 3435CC carriers, respectively; P = .01). The CYP1A2, CYP2C9, CYP2C19, CYP3A5, and UGT2B7 genotypes did not influence methadone plasma levels. Only CYP2B6 displayed a stereoselectivity in its activity. CONCLUSION: In vivo, CYP3A4 and CYP2B6 are the major CYP isoforms involved in methadone metabolism, with CYP2D6 contributing to a minor extent. ABCB1 genetic polymorphisms also contribute slightly to the interindividual variability of methadone kinetics. The genetic polymorphisms of these 4 proteins had no influence on the response to treatment and only a small influence on the dose requirement of methadone.
Resumo:
Oxalate is a highly insoluble metabolic waste excreted by the kidneys. Disturbances of oxalate metabolism are encountered in enteric hyperoxaluria (secondary to malabsorption, gastric bypass or in case of insufficient Oxalobacter colonization), in hereditary hyperoxaluria and in intoxication (ethylene glycol, vitamin C). Hyperoxaluria causes a large spectrum of diseases, from isolated hyperoxaluria to kidney stones and nephrocalcinosis formation, eventually leading to kidney failure and systemic oxalosis with life-threatening deposits in vital organs. New causes of hyperoxaluria are arising recently, in particular after gastric bypass surgery, which requires regular and preemptive monitoring. The treatment of hyperoxaluria involves reduction in oxalate intake and increase in calcium intake. Optimal urine dilution and supplementation with inhibitors of kidney stone formation (citrate) are required. Some conditions may need vitamin B6 supplementation, and the addition of probiotics might be useful in the future. Primary care physicians should identify cases of recurrent calcium oxalate stones and severe hyperoxaluria. Further management of hyperoxaluria requires specialized care.