57 resultados para Open-field test
em Université de Lausanne, Switzerland
Resumo:
This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.
Resumo:
Knockout mice lacking the alpha-1b adrenergic receptor were tested in behavioral experiments. Reaction to novelty was first assessed in a simple test in which the time taken by the knockout mice and their littermate controls to enter a second compartment was compared. Then the mice were tested in an open field to which unknown objects were subsequently added. Special novelty was introduced by moving one of the familiar objects to another location in the open field. Spatial behavior and memory were further studied in a homing board test, and in the water maze. The alpha-1b knockout mice showed an enhanced reactivity to new situations. They were faster to enter the new environment, covered longer paths in the open field, and spent more time exploring the new objects. They reacted like controls to modification inducing spatial novelty. In the homing board test, both the knockout mice and the control mice seemed to use a combination of distant visual and proximal olfactory cues, showing place preference only if the two types of cues were redundant. In the water maze the alpha-1b knockout mice were unable to learn the task, which was confirmed in a probe trial without platform. They were perfectly able, however, to escape in a visible platform procedure. These results confirm previous findings showing that the noradrenergic pathway is important for the modulation of behaviors such as reaction to novelty and exploration, and suggest that this is mediated, at least partly, through the alpha-1b adrenergic receptors. The lack of alpha-1b adrenergic receptors in spatial orientation does not seem important in cue-rich tasks but may interfere with orientation in situations providing distant cues only.
Resumo:
Knockout mice lacking alphalb noradrenergic receptors were tested in behavioural experiments to test a possible effect of the absence of this receptor in reaction to novelty and spatial orientation. Reaction to novelty was tested in two experiments. In the first one the mice' latency to exit the first part of a two compartment set-up was measured. The knockout mice were faster to emerge then their littermate controls. Then they were tested in an open-field, in which new objects were added at the second trial. In the open-field without objects (first trial), the knockout mice showed a greater locomotor activity (path length). Then the same mice showed enhanced exploration of the newly introduced objects, relative to the control. The spatial orientation experiments were done on a homing board and in the water maze. The homing board did not yield a significant difference between the knock-out and the control mice. Both groups showed impaired results when the proximal (olfactory) and distal (visual) cues were disrupted by the rotation of the table. In the water maze however, the alphalb(-/-) mice were unable to solve the task (acquisition and retention), whereas the control mice showed a good acquisition and retention behaviour. The knockout mice' incapacity to learn to reach the submerged platform was not due to an incapacity to swim, as they were as good as their control littermates to reach the platform when it was visible.
Resumo:
Background: Glutathione (GSH), a major cellular redox regulator and antioxidant, is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients. The gene of the key GSH-synthesizing enzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, is associated with schizophrenia, suggesting that the deficit in the GSH system is of genetic origin. Using the GCLM knock-out (KO) mouse as model system with 60% decreased brain GSH levels and, thus, strong vulnerability to oxidative stress, we have shown that GSH dysregulation results in abnormal mouse brain morphology (e.g., reduced parvalbumin, PV, immuno-reactivity in frontal areas) and function. Additional oxidative stress, induced by GBR12909 (a dopamine re-uptake inhibitor), enhances morphological changes even further. Aim: In the present study we use the GCLM KO mouse model system, asking now, whether GSH dysregulation also compromises mouse behaviour and cognition. Methods: Male and female wildtype (WT) and GCLM-KO mice are treated with GBR12909 or phosphate buffered saline (PBS) from postnatal day (P) 5 to 10, and are behaviourally tested at P 60 and older. Results: In comparison to WT, KO animals of both sexes are hyperactive in the open field, display more frequent open arm entries on the elevated plus maze, longer float latencies in the Porsolt swim test, and more frequent contacts of novel and familiar objects. Contrary to other reports of animal models with reduced PV immuno-reactivity, GCLM-KO mice display normal rule learning capacity and perform normally on a spatial recognition task. GCLM-KO mice do, however, show a strong deficit in object-recognition after a 15 minutes retention delay. GBR12909 treatment exerts no additional effect. Conclusions: The results suggest that animals with impaired regulation of brain oxidative stress are impulsive and have reduced behavioural control in novel, unpredictable contexts. Moreover, GSH dysregulation seems to induce a selective attentional or stimulus-encoding deficit: despite intensive object exploration, GCLM-KO mice cannot discriminate between novel and familiar objects. In conclusion, the present data indicate that GSH dysregulation may contribute to the manifestation of behavioural and cognitive anomalies that are associated with schizophrenia.
Resumo:
Redox-dysregulation represents a common pathogenic mechanism in schizophrenia (SZ) and bipolar disorder (BP). It may in part arise from a genetically compromised synthesis of glutathione (GSH), the major cellular antioxidant and redox-regulator. Allelic variants of the genes coding for the rate-limiting GSH synthesizing enzyme glutamate-cysteine-ligase modifier (GCLM) and/or catalytic (GCLC) subunit have been associated with SZ and BP. Using mice knockout (KO) for GCLM we have previously shown that impaired GSH synthesis is associated with morphological, functional and neurochemical anomalies similar to those in patients. Here we asked whether GSH deficit is also associated with SZ- and BP-relevant behavioral and cognitive anomalies. Accordingly, we subjected young adult GCLM-wildtype (WT), heterozygous and KO males to a battery of standard tests. Compared to WT, GCLM-KO mice displayed hyperlocomotion in the open field and forced swim test but normal activity in the home cage, suggesting that hyperlocomotion was selective to environmental novelty and mildly stressful situations. While spatial working memory and latent inhibition remained unaffected, KO mice showed a potentiated hyperlocomotor response to an acute amphetamine injection, impaired sensorymotor gating in the form of prepulse inhibition and altered social behavior compared to WT. These anomalies resemble important aspects of both SZ and the manic component of BP. As such our data support the notion that redox-dysregulation due to GSH deficit is implicated in both disorders. Moreover, our data propose the GCLM-KO mouse as a valuable model to study the behavioral and cognitive consequences of redox dysregulation in the context of psychiatric disease.
Resumo:
A series of 4 experiments examined the performance of rats with retrohippocampal lesions on a spatial water-maze task. The animals were trained to find and escape onto a hidden platform after swimming in a large pool of opaque water. The platform was invisible and could not be located using olfactory cues. Successful escape performance required the rats to develop strategies of approaching the correct location with reference solely to distal extramaze cues. The lesions encompassed the entire rostro-caudal extent of the lateral and medial entorhinal cortex, and included parts of the pre- and para-subiculum, angular bundle and subiculum. Groups ECR 1 and 2 sustained only partial damage of the subiculum, while Group ECR+S sustained extensive damage. These groups were compared with sham-lesion and unoperated control groups. In Expt 1A, a profound deficit in spatial localisation was found in groups ECR 1 and ECR+S, the rats receiving all training postoperatively. In Expt 1B, these two groups showed hyperactivity in an open-field. In Expt 2, extensive preoperative training caused a transitory saving in performance of the spatial task by group ECR 2, but comparisons with the groups of Expt 1A revealed no sustained improvement, except on one measure of performance in a post-training transfer test. All rats were then given (Expt 3) training on a cueing procedure using a visible platform. The spatial deficit disappeared but, on returning to the normal hidden platform procedure, it reappeared. Nevertheless, a final transfer test, during which the platform was removed from the apparatus, revealed a dissociation between two independent measures of performance: the rats with ECR lesions failed to search for the hidden platform but repeatedly crossed its correct location accurately during traverses of the entire pool. This partial recovery of performance was not (Expt 4) associated with any ability to discriminate between two locations in the pool. The apparently selective recovery of aspects of spatial memory is discussed in relation to O'Keefe and Nadel's (1978) spatial mapping theory of hippocampal function. We propose a modification of the theory in terms of a dissociation between procedural and declarative subcomponents of spatial memory. The declarative component is a flexible access system in which information is stored in a form independent of action. It is permanently lost after the lesion. The procedural component is "unmasked" by the retrohippocampal lesion giving rise to the partial recovery of spatial localisation performance.
Resumo:
We conducted an experiment to assess the use of olfactory traces for spatial orientation in an open environment in rats, Rattus norvegicus. We trained rats to locate a food source at a fixed location from different starting points, in the presence or absence of visual information. A single food source was hidden in an array of 19 petri dishes regularly arranged in an open-field arena. Rats were trained to locate the food source either in white light (with full access to distant visuospatial information) or in darkness (without any visual information). In both cases, the goal was in a fixed location relative to the spatial frame of reference. The results of this experiment revealed that the presence of noncontrolled olfactory traces coherent with the spatial frame of reference enables rats to locate a unique position as accurately in darkness as with full access to visuospatial information. We hypothesize that the olfactory traces complement the use of other orientation mechanisms, such as path integration or the reliance on visuospatial information. This experiment demonstrates that rats can rely on olfactory traces for accurate orientation, and raises questions about the establishment of such traces in the absence of any other orientation mechanism. Copyright 1998 The Association for the Study of Animal Behaviour.
Resumo:
The aim of the present study was to assess the influence of local environmental olfactory cues on place learning in rats. We developed a new experimental design allowing the comparison of the use of local olfactory and visual cues in spatial and discrimination learning. We compared the effect of both types of cues on the discrimination of a single food source in an open-field arena. The goal was either in a fixed or in a variable location, and could be indicated by local olfactory and/or visual cues. The local cues enhanced the discrimination of the goal dish, whether it was in a fixed or in a variable location. However, we did not observe any overshadowing of the spatial information by the local olfactory or visual cue. Rats relied primarily on distant visuospatial information to locate the goal, neglecting local information when it was in conflict with the spatial information.
Resumo:
In this procedure, subjects learn the spatial position of one hole out of many, that allows them to escape from a large open-field into their home cage. The arena is circular and can be rotated between trials so that no proximal landmark is permanently associated with the target hole. This task is thus similar to the Morris water maze procedure, since subjects must remember the position of the escape hole relative to extra-arena cues only. In addition it allows studying the importance of olfactory cues such as scent marks in or around a hole. Since the motivation is to reach home and the motor requirement is low, this task provides a useful alternative to the Morris place navigation task for studying spatial orientation in weanling or senescent rats. Examples are given showing that various behavioural parameters provide a good estimation as how subjects learn this task.
Resumo:
Episodic memories for autobiographical events that happen in unique spatiotemporal contexts are central to defining who we are. Yet, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. Here, we studied the development of allocentric spatial memory, a fundamental component of episodic memory, in two versions of a real-world memory task requiring 18 month- to 5-year-old children to search for rewards hidden beneath cups distributed in an open-field arena. Whereas children 25-42-months-old were not capable of discriminating three reward locations among 18 possible locations in absence of local cues marking these locations, children older than 43 months found the reward locations reliably. These results support previous findings suggesting that allocentric spatial memory, if present, is only rudimentary in children under 3.5 years of age. However, when tested with only one reward location among four possible locations, children 25-39-months-old found the reward reliably in absence of local cues, whereas 18-23-month-olds did not. Our findings thus show that the ability to form a basic allocentric representation of the environment is present by 2 years of age, and its emergence coincides temporally with the offset of infantile amnesia. However, the ability of children to distinguish and remember closely related spatial locations improves from 2 to 3.5 years of age, a developmental period marked by persistent deficits in long-term episodic memory known as childhood amnesia. These findings support the hypothesis that the differential maturation of distinct hippocampal circuits contributes to the emergence of specific memory processes during early childhood.
Resumo:
Résumé : Emotion et cognition sont deux termes généralement employés pour désigner des processus psychiques de nature opposée. C'est ainsi que les sciences cognitives se sont longtemps efforcées d'écarter la composante «chaude »des processus «froids »qu'elles visaient, si ce n'est pour montrer l'effet dévastateur de la première sur les seconds. Pourtant, les processus cognitifs (de collecte, maintien et utilisation d'information) et émotioAnels (d'activation subjective, physiologique et comportementale face à ce qui est attractif ou aversif) sont indissociables. Par l'approche neuro-éthologique, à l'interface entre le substrat biologique et les manifestations comportementales, nous nous sommes intéressés à une fonction cognitive essentielle, la fonction mnésique, classiquement exprimée chez le rongeur par l'orientation spatiale. Au niveau du substrat, McDonald et White (1993) ont montré la dissociation de trois systèmes de mémoire, avec les rôles de l'hippocampe, du néostriatum et de l'amygdale dans l'encodage des informations respectivement épisodiques, procédurales et émotionnelles. Nous nous sommes penchés sur l'interaction entre ces systèmes en fonction de la dimension émotionnelle par l'éclairage du comportement. L'état émotionnel de l'animal dépend de plusieurs facteurs, que nous avons tenté de contrôler indirectement en comparant leurs effets sur l'acquisition, dans diverses conditions, de la tâche de Morris (qui nécessite la localisation dans un bassin de la position d'une plate-forme submergée), ainsi que sur le style d'exploration de diverses arènes, ouvertes ou fermées, plus ou moins structurées par la présence de tunnels en plexiglas transparent. Nous avons d'abord exploré le rôle d'un composant du système adrénergique dans le rapport à la difficulté et au stress, à l'aide de souris knock-out pour le récepteur à la noradrénaline a-1 B dans un protocole avec 1 ou 4 points de départ dans un bassin partitionné. Ensuite, nous nous sommes penchés, chez le rat, sur les effets de renforcement intermittent dans différentes conditions expérimentales. Dans ces conditions, nous avons également tenté d'analyser en quoi la situation du but dans un paysage donné pouvait interférer avec les effets de certaines formes de stress. Finalement, nous avons interrogé les conséquences de perturbations passées, y compris le renforcement partiel, sur l'organisation des déplacements sur sol sec. Nos résultats montrent la nécessité, pour les souris cont~ô/es dont l'orientation repose sur l'hippocampe, de pouvoir varier les trajectoires, ce qui favoriserait la constitution d'une carte cognitive. Les souris a->B KO s'avèrent plus sensibles au stress et capables de bénéficier de la condition de route qui permet des réponses simples et automatisées, sous-tendues par l'activité du striatum. Chez les rats en bassin 100% renforcé, l'orientation apparaît basée sur l'hippocampe, relayée par le striatum pour le développement d'approches systématiques et rapides, avec réorientation efficace en nouvelle position par réactivation dépendant de l'hippocampe. A 50% de renforcement, on observe un effet du type de déroulement des sessions, transitoirement atténué par la motivation Lorsque les essais s'enchaînent sans pause intrasession, les latences diminuent régulièrement, ce qui suggère une prise en charge possible par des routines S-R dépendant du striatum. L'organisation des mouvements exploratoires apparaît dépendante du niveau d'insécurité, avec différents profils intermédiaires entre la différentiation maximale et la thigmotaxie, qui peuvent être mis en relation avec différents niveaux d'efficacité de l'hippocampe. Ainsi, notre travail encourage à la prise en compte de la dimension émotionnelle comme modulatrice du traitement d'information, tant en phase d'exploration de l'environnement que d'exploitation des connaissances spatiales. Abstract : Emotion and cognition are terms widely used to refer to opposite mental processes. Hence, cognitive science research has for a long time pushed "hot" components away from "cool" targeted processes, except for assessing devastating effects of the former upon the latter. However, cognitive processes (of information collection, preservation, and utilization) and emotional processes (of subjective, physiological, and behavioral activation roue to attraction or aversion) are inseparable. At the crossing between biological substrate and behavioral expression, we studied a chief cognitive function, memory, classically shown in animals through spatial orientation. At the substrate level, McDonald et White (1993) have shown a dissociation between three memory systems, with the hippocampus, neostriatum, and amygdala, encoding respectively episodic, habit, and emotional information. Through the behavior of laboratory rodents, we targeted the interaction between those systems and the emotional axis. The emotional state of an animal depends on different factors, that we tried to check in a roundabout way by the comparison of their effects on acquisition, in a variety of conditions, of the Morris task (in which the location of a hidden platform in a pool is required), as well as on the exploration profile in different apparatus, open-field and closed mazes, more or less organized by clear Plexiglas tunnels. We first tracked the role, under more or less difficult and stressful conditions, of an adrenergic component, with knock-out mice for the a-1 B receptor in a partitioned water maze with 1 or 4 start positions. With rats, we looked for the consequences of partial reinforcement in the water maze in different experimental conditions. In those conditions, we further analyzed how the situation of the goal in the landscape could interfere with the effect of a given stress. At last, we conducted experiments on solid ground, in an open-field and in radial mazes, in order to analyze the organization of spatial behavior following an aversive life event, such as partial reinforcement training in the water maze. Our results emphasize the reliance of normal mice to be able to vary approach trajectories. One of our leading hypotheses is that such strategies are hippocampus-dependent and are best developed for of a "cognitive map like" representation. Alpha-1 B KO mice appear more sensitive to stress and able to take advantage of the route condition allowing simple and automated responses, most likely striatum based. With rats in 100% reinforced water maze, the orientation strategy is predominantly hippocampus dependent (as illustrated by the impairment induced by lesions of this structure) and becomes progressively striatum dependent for the development of systematic and fast successful approaches. Training towards a new platform position requires a hippocampus based strategy. With a 50% reinforcement rate, we found a clear impairment related to intersession disruption, an effect transitorily minimized by motivation enhancement (cold water). When trials are given without intrasession interruption, latencies consistently diminish, suggesting a possibility for striatum dependent stimulus-response routine to occur. The organization of exploratory movements is shown to depend on the level of subjective security, with different intermediary profiles between maximum differentiation and thigmotaxy, which can be considered in parallel with different efficiency levels of the hippocampus dependent strategies. Thus, our work fosters the consideration of emotion as a cognitive treatment modulator, during spatial exploration as well as spatial learning. It leads to a model in which the predominance of hippocampus based exploration is challenged by training conditions of various nature.
Resumo:
RESUME Ce travail se propose de discuter des résultats comportementaux observés chez des rats obtenus dans trois paradigmes expérimentaux différents : le bassin de Morris (Morris Water Maze, Morris, 1984) ; la table à trous (Homing Board, Schenk, 1989) et le labyrinthe radial (Radial Arm Maze, Olton et Samuelson, 1976). Les deux premières tâches sont spatiales et permettent un apprentissage de place en environnements contrôlés, et la troisième est une tâche comportementale qui différencie deux habiletés particulières, celle d'élimination (basée sur la mémoire de travail) et celle de sélection (basée sur la mémoire de référence). La discussion des résultats porte sur les stratégies de navigation utilisées par les animaux pour résoudre les tâches et plus précisément sur les facteurs qui peuvent influencer le choix de ces stratégies. Le facteur environnemental (environnement contrôlé) et le facteur cognitif (vieillissement) représentent les variables étudiées ici. C'est ainsi que certaines hypothèses communément acceptées ont été malmenées par nos résultats. Or si l'espace est habituellement supposé homogène (toutes les positions spatiales présentent le même degré de difficulté lors d'un apprentissage en champ ouvert), ce travail établit qu'une position associée -sans contiguïté - à l'un des trois indices visuels situés dans la périphérie de l'environnement est plus difficile à apprendre qu'une position située entre deux des trois indices. Deuxièmement, alors qu'il est admis que l'apprentissage d'une place dans un environnement riche requiert le même type d'information. dans la bassin de Morris (tâche nagée) que sur la table à trous (tâche marchée), nous avons montré que la discrimination spatiale en bassin ne peut être assurée par les trois indices visuels périphériques et nécessite la présence d'au moins un élément supplémentaire. Enfin, l'étude du vieillissement a souvent montré que l'âge réduit les capacités cognitives nécessaires à la navigation spatiale, conduisant à un déficit général des performances d'un animal sénescent, alors que dans notre travail, nous avons trouvé les animaux âgés plus performants et plus efficaces que les adultes dans une tâche particulière de collecte de nourriture. Ces expériences s'inscrivent dans une étude générale qui met à l'épreuve le modèle théorique proposé pax Schenk et Jacobs (2003), selon lequel l'encodage de la carte cognitive (Tolman, 1948 ; O'Keefe et Nadel, 1978) se ferait dans l'hippocampe par l'activité de deux modules complémentaires :d'une part le CA3 - Gyrus Denté pour le traitement d'une trame spatiale basée sur des éléments directionnels et Jou distribués en gradient (bearing map) et d'autre part le CAl - Subiculum pour le traitement des représentations locales basées sur les positions relatives des éléments fixes de l'environnement (sketch map). SUMMARY This work proposes to talk about behavioural results observed in three different experimental paradigms with rats: the Morris Water Maze (Morris, 1984); the Homing Board (Schenk, 1989) and the Radial Arm Maze (Olton and Samuelson, 1976). The two first tasks are spatial ones and allow place learning in controlled environments. The third one is a behavioural task which contrasts two particular skills, the elimination (based on working memory) and the selection one (based on reference memory). The topic of the discussion will be the navigation strategies used by animals to solve the different tasks, and more precisely the factors which can bias this strategies' choice. The environmental (controlled) and the cognitive (aging) factors are the variables studied here. Thus, some hypotheses usually accepted were manhandled by our results. Indeed, if space is habitually homogenously considered (all spatial positions present the same degree of difficulty in an open field learning), this work establishes that an associated position -without being adjacent - to one of the three visual cues localised in the environmental periphery is more difficult to learn than a configurationnel position (situated between two of the three cues). Secondly, if it is received that place learning in a rich environment requires the same information in the Morris water maze (swimming task) that on the Homing board (walking task), we showed that spatial discrimination in the water maze can't be provided by the three peripheral cue cards and needs the presence of a supplementary cue. At last, aging studies often showed that oldness decreases cognitive skills in spatial navigation, leading to a general deficit in performances. But, in our work, we found that senescent rats were more efficient than adult ones in a special food collecting task. These experiments come within the scope of a general study which tests the theoretical model proposed by Jacobs and Schenk (2003), according to which the cognitive map's encoding (Tolman, 1948, O'Keefe and Nadel, 1978) should take place in the hippocampus by two complementary modules, first the DG-CA3 should encode directional and/or gradients references (the bearing map), and secondly the Subiculum-CAl should process locale elements (the sketch map).
Resumo:
Experiments were designed to examine some properties of spatial representations in rats. Adult subjects were trained to escape through a hole at a fixed position in a large circular arena (see Schenk 1989). The experiments were conducted in the dark, with a limited number of controlled visual light cues in order to assess the minimal cue requirement for place learning. Three identical light cues (shape, height and distance from the table) were used. Depending on the condition, they were either permanently on, or alternatively on or off, depending on the position of the rat in the field. Two questions were asked: a) how many identical visual cues were necessary for spatial discrimination in the dark, and b) could rats integrate the relative positions of separate cues, under conditions in which the rat was never allowed to perceive all three cues simultaneously. The results suggest that rats are able to achieve a place discrimination task even if the three cues necessary for efficient orientation can never be seen simultaneously. A dissociation between the discrimination of the spatial position of the goal and the capacity to reach it by a direct path suggests that a reduced number of cues might require prolonged locomotion to allow an accurate orientation in the environment.
Resumo:
Escherichia coli-based bioreporters for arsenic detection are typically based on the natural feedback loop that controls ars operon transcription. Feedback loops are known to show a wide range linear response to the detriment of the overall amplification of the incoming signal. While being a favourable feature in controlling arsenic detoxification for the cell, a feedback loop is not necessarily the most optimal for obtaining highest sensitivity and response in a designed cellular reporter for arsenic detection. Here we systematically explore the effects of uncoupling the topology of arsenic sensing circuitry on the developed reporter signal as a function of arsenite concentration input. A model was developed to describe relative ArsR and GFP levels in feedback and uncoupled circuitry, which was used to explore new ArsR-based synthetic circuits. The expression of arsR was then placed under the control of a series of constitutive promoters, which differed in promoter strength, and which could be further modulated by TetR repression. Expression of the reporter gene was maintained under the ArsR-controlled Pars promoter. ArsR expression in the systems was measured by using ArsR-mCherry fusion proteins. We find that stronger constitutive ArsR production decreases arsenite-dependent EGFP output from Pars and vice versa. This leads to a tunable series of arsenite-dependent EGFP outputs in a variety of systematically characterized circuitries. The higher expression levels and sensitivities of the response curves in the uncoupled circuits may be useful for improving field-test assays using arsenic bioreporters.
Resumo:
1. Harsh environmental conditions experienced during development can reduce the performance of the same individuals in adulthood. However, the 'predictive adaptive response' hypothesis postulates that if individuals adapt their phenotype during development to the environments where they are likely to live in the future, individuals exposed to harsh conditions in early life perform better when encountering the same harsh conditions in adulthood compared to those never exposed to these conditions before. 2. Using the common vole (Microtus arvalis) as study organism, we tested how exposure to flea parasitism during the juvenile stage affects the physiology (haematocrit, resistance to oxidative stress, resting metabolism, spleen mass, and testosterone), morphology (body mass, testis mass) and motor performance (open field activity and swimming speed) of the same individuals when infested with fleas in adulthood. According to the 'predictive adaptive response' hypothesis, we predicted that voles parasitized at the adult stage would perform better if they had already been parasitized with fleas at the juvenile stage. 3. We found that voles exposed to fleas in adulthood had a higher metabolic rate if already exposed to fleas when juvenile, compared to voles free of fleas when juvenile and voles free of fleas in adulthood. Independently of juvenile parasitism, adult parasitism impaired adult haematocrit and motor performances. Independently of adult parasitism, juvenile parasitism slowed down crawling speed in adult female voles. 4. Our results suggest that juvenile parasitism has long-term effects that do not protect from the detrimental effects of adult parasitism. On the contrary, experiencing parasitism in early-life incurs additional costs upon adult parasitism measured in terms of higher energy expenditure, rather than inducing an adaptive shift in the developmental trajectory. 5. Hence, our study provides experimental evidence for long term costs of parasitism. We found no support for a predictive adaptive response in this host-parasite system.