46 resultados para Oman Ophiolite

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permian to Late Cretaceous allochthonous sedimentary and volcanic rocks exposed in the Batain area (eastern Oman Margin) have received comparably little attention in the past. They largely were considered as part of the Hamrat Duru Group (Hawasina Complex) of the northern Oman Mountains. Structural, kinematic and biostratigraphic results from our mapping campaign in the Batain area have now revealed, that emplacement of these units occurred in a WNW direction during latest Cretaceous/Early Paleogene time. This clearly contrasts with previous models that postulated a S-ward directed obduction in Campanian times such as recorded from the Hawasina Complex and Semail Ophiolite in the Oman Mountains. We herewith establish the `'Batain Group'' comprising all Permian to Late Cretaceous allochthonous units in the Batain Area. These are: 1.) the Permian Qarari Formation deposited in the toe of a slope setting; 2.) the Late Permian to late Liassic Al Jil Formation comprising periplatform detritus and very coarse breccias; 3.) the Scythian to Norian Matbat Formation formed by slope deposits; 4.) the Early Jurassic to early Oxfordian Guwayza Formation with high energy platform detritus; 5.) the Mid-Jurassic to earliest Cretaceous Ruwaydah Formation seamount; and 6.) the Oxfordian to Santonian Wahrah Formation, mainly radiolarites; and 7.) the Santonian to latest Maastrichtian Fayah Formation built by flysch-type sediments. These sedimentary and volcanic rocks represent deposits of the former ``Batain basin'' off eastern-Oman, destroyed by compressional tectonics at the Cretaceous/Paleogene transition. For tectono-stratigraphic reasons the Batain Group does not form part of the Hawasina Complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is a taxonomic study of the radiolarian species of the superfamilies Eptingiacea and Saturnaliacea occurring in the middle Carnian fauna from the Koseyahya section, near the town of Elbistan, southeastern Turkey. This fauna is characteristic of the Tetraporobrachia haeckeli Radiolarian Zone as defined in Austria and later found also in Turkey and Oman. It comes from an 8 m thick succession of clayey/cherty limestones from the lower part of the section. In addition, a few species from the late Ladinian and Carnian from Oman and the early Norian from Alaska have also been included in this study, in order to improve some generic diagnoses and to show the diversity and evolutionary trends of some genera. 32 radiolarian species of which 22 are new are described and illustrated, and assigned to 16 genera of which three are new (Capnuchospyris, Veleptingium, and Triassolaguncula). The diagnoses of some species, genera, subfamilies and families have been revised, and the family Eptingiidae has been raised to the rank of superfamily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent detailed studies on the Batain nappes (northeast coast of Oman), which represent a special part of the so-called `Oman Exotics', have led to a better understanding of the Neotethyan geodynamic evolution. The Batain Exotics bear witness to volcanic activity, sea-level changes, tectonic instability, rifting and oceanization along the Eastern Oman margin during Late Palaeozoic and Mesozoic times. They allow definition of the Batain basin as an aborted Permian branch of Neotethys. This marine basin was created in Early Permian times extending southward to the East African/Madagascar region and was linked to the Karoo rift system. The presented revised classification of the Batain nappes considers the Batain basin to be no longer a part of the Hawasina basin and the Neotethyan mat-gin proper. We attribute the Batain basin to a Mozambique-Sornali-Masirah rift system (Somoma). This system started in Early Permian, times, creating a marine basin between Arabia and India/Madagascar; rifting in the Late Triassic and oceanization during Late Jurassic times led to the separation of East Gondwana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To constrain deformation temperatures of mantle shear zones, we studied a strike-slip shear zone (Hilti massif, Semail ophiolite, Oman) and focused on the interaction between microstructural mechanisms and chemical equilibration processes. Quantitative microfabric analysis on harzburgites with different deformation intensity (porphyroclastic tectonite, mylonite, and ultramylonite) was combined with orthopyroxene geothermometry. The average grain size of all phases decreases with decreasing shear zone thickness. Dynamic recrystallization of porphyroclasts in combination with dissolution-precipitation and nucleation result in small-sized, chemically equilibrated pyroxenes. The composition of orthopyroxene was used to calculate deformation temperatures. In the case of the porphyroclastic tectonites, the chemical composition of orthopyroxene has been reset by diffusion yielding temperature estimates of 880-900 degrees C. The mylonites were deformed by dislocation creep of olivine and show a broad range of calculated temperatures, which result from a combination of grain size reduction and inheritance of equilibrium compositions from earlier high-temperature events and diffusion. In mylonites, diffusion profiles combined with geothermometry and grain size analysis indicate a mylonitic deformation temperature of 800-900 degrees C possibly followed by diffusion. In ultramylonites, the smallest grains (<30 mu m) reveal equilibration at temperatures of similar to 700 degrees C during the last stages of ductile deformation, which was dominated by diffusion creep of olivine. Our results provide a crucial link between temperature and evolution of microstructures from dislocation creep to diffusion creep in mantle shear zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

- The lower member of the Alwa Formation (Lower Olenekian), found within the Ba'id Exotic in the Oman Mountains (Sultanate of Oman), consists of ammonoid-bearing, pelagic limestones that were deposited on an isolated, drowned carbonate platform on the Neotethyan Gondwana margin. The strata contain a variety of unusual carbonate textures and features, including thrombolites, Frutexites-bearing microbialites that contain synsedimentary cements, matrix-free breccias surrounded by isopachous calcite cement, and fissures and cavities filled with large botryoidal cements. Thrombolites are found throughout the study interval, and occur as 0.5-1.0 m thick lenses or beds that contain laterally laterally-linked stromatactis cavities. The Frutexites-bearing microbialites occur less frequently, and also form lenses or beds, up to 30 cm thick; the microbialites may be laminated, and often developed on hardgrounds. In addition, the Frutexites-bearing microbialites also contain synsedimentary calcite cement crusts and botryoids (typically <1 cm thick) that harbour layers or pockets of what appear to be bacterial sheaths and coccoids, and are indicative of biologically mediated precipitation of the cement bodies. Slumping following lithification led to fracturing of the limestone and the precipitation of large, botryoidal aragonite cements in fissures that cut across the primary fabric. Environmental conditions, specifically palaeoxygenation and the degree of calcium carbonate supersaturation, likely controlled whether the thrombolites (high level of calcium carbonate supersaturation associated with vertical mixing of water masses and dysoxic conditions) or Frutexites-bearing microbialites (low level of calcium carbonate supersaturation associated with anoxic conditions and deposition below a stable chemocline) formed. The results of this study point to continued environmental stress in the region during the Early Triassic that likely contributed to the uneven recovery from the Permian-Triassic mass extinction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Oman Mountains provide some of the best sections of Permian and Triassic sediments from ocean sea floor to base-of-slope environments related to the distal South Tethyan margin. The central part of the range exposes the Buday'ah section of oceanic sediments in the so-called "Hawasina allochtons". The locality of Wadi Maqam in the north-western part of the Oman Mountains is among places where the thick Permian-Triassic base-of-slope sediments is exposed (Baud et al., 2001). Overlying 400 m of middle Permian limestones and dolomites, the upper Permian sediments consist of 50 m of ≈ 10 cm thick beds of cherts and dolomites rich in sponge spicules. The top of the Permian units is well bioturbated lime mudstone-wackestone, devoid of cherts and dated as late Changhsingian (Krystyn in Richoz et al., 2005). The boundary yellow shales are overlain by very thinly bedded, laminated microbial platy lime mudstone with H. parvus. The dramatic loss of the burrowing infauna indicates the appearance of oxygen-poor water. These Induan sediments are about 25 m thick and show at the top the first calcirudites, commonly clast-supported (edge-wise conglomerates), and are characterized by tabular clasts representing the sub- in situ reworking of the laminated, platy calcilutite. The very thick Smithian overlying litho-unit (up to 900 m) marks the onset on the base-of-slope of a deep-marine basin in which carbonate submarine fan deposits developed This very thick unit consists essentially of platy limestones, calcarenites and calcirudites. It comprises mainly grey-beige calcilutite, laminated and flaggy, interbedded with sparse beds of fine-grained calcarenite in cm beds. Channelized beds of intraformational calcirudite are also part of this succession which constitutes the greater part of the outcrop available. During the Spathian to Anisian, the sedimentation changes to terrigenous mudstone and siltstone that ended with Ladinian radiolarites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the exotic blocks of the Hawasina Nappes (Sultanate of Oman) leads to give apposit data that allow us to propose a new paleogeographic evolution of the Oman margin in time and space. A revised classification of exotic blocks into different paleogeographical units is presented. Two newly introduced stratigraphic groups, the Ramaq Group (Ordovician to Triassic) and the Al Buda'ah Group (upper Permian to Jurassic) are interpreted as tilted blocks related to the Oman continental margin. The Kawr Group (middle Triassic to Cretaceous) is redefined and interpreted as an atoll-type seamount. The paleogeography and paleoenvironments of these units are integrated into a new scheme of the Neotethyan rifting history. Brecciae and olisto¬liths of the Hawasina series are interpreted to have originated from tectonic movements affecting the Oman margin and the Neotethyan ocean floor. The breccias of late Permian age were generated by the extension processes affecting the margin, and by the creation of the Neotethyan oceanic floor. The breccias of mid-late Triassic age coincide in time with the collision of the Cimmerian continents with Eurasia. In constrast, the breccias of late Jurassic and Cretaceous age are interpreted as resulting to the creation of a new oceanic crust (Semail) off the Oman margin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coarse-grained gabbros from two different localities in the Gets nappe (Upper Prealps) have been dated by U-Pb and Ar-40/Ar-39 isotopic analyses. Zircons from both gabbros gave identical concordant U-Pb ages of 166 +/- 1 Ma (Fig. 4). Amphibole from one of them gave an Ar-40/Ar-39 plateau age of 165.9 +/- 2.2 Ma (Fig. 5). This concordance implies that 166 +/- 1 Ma is the age of magmatic crystallization of these gabbros. The Gets wildflysch with its mafic and ultramafic lenses is an ophiolitic melange, that we infer to come from a proximal part of the accretionary prism at the foot of the active SE margin of the Piemont ocean. In this position we can expect to find remnants of the oldest parts of the Piemont oceanic crust. These are the first high-precision dates using modern techniques from an Alpine ophiolite and are in excellent agreement with the following: 1) The few, somewhat younger, reliable ages on ophiolites from the probable continuation of the Piemont basin into the Apennines and Corsica; 2) Recent data on the age of the first supra-ophiolitic sediments (Late Bathonian to Early Callovian radiolarites); 3) The structural and stratigraphic evolution of the Brianconnais (s.s.) domain, the future NW margin of the Piemont ocean. We note a remarkable coincidence, in Late Bajocian time, between: (A) the end of tensile fracturing in the Brianconnais continental crust; (B) the beginning of its subsidence; (C) the age of the Gets ophiolites. This coincidence is consistent with an ocean opening mechanism based on a combination of subhorizontal extension and thermally driven vertical movements of the lithosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Wadi Wasit area (Central Oman Mountains), Dienerian breccias are widespread. These breccias consist mostly of Guadalupian reefal blocks, often dolomitised, and some rare small-sized blocks of lowermost Triassic bivalve-bearing limestones. A unique block, with a size of about 200 m(3), including Permian and earliest Triassic faunas has been studied in detail. The so-called Wadi Wasit block consists of three major lithological units. A basal unstratified grey limestone is rich in various reef-building organisms (rugose corals, calcareous sponges, stromatoporoids) and has been dated as Middle Permian. It is disconformably overlain by well- and thin-bedded light grey to yellowish coloured limestones rich in molluscs. Two major lithologies (Coquina Limestone respectively Bioclastic Limestone unit) characterise the shelly limestones, their contact seems gradual. These two units are well-dated; they are of Griesbachian age and contain three conodont zones, the Parvus Zone, the Staeschei Zone and the Sosioensis Zone, and two ammonoid zones, the Ophiceras tibeticum Zone and an 'unnamed interval'. The third unit consists of a grey marly limestone containing Neospathodus kummeli (basal Dienerian). It is the first record of well-dated basal Triassic sediments in the Arabian Peninsula. The Coquina Limestone is dominated by the bivalve Promyalina with some Claraia and Eumorphotis. This bivalve association is interpreted as a pioneering opportunistic assemblage. Towards the top of the Bioclastic Limestone unit, the faunal diversity increases and contains probably more than 20 taxa of bivalves, microgastropods, crinoids, brachiopods, ammonoids, echinoid spines, ostracods and conodonts. The generic diversity of this biofacies exceeds by far any other Griesbachian assemblage known. Our data give new evidence for the geodynamical history for the distal carbonate shelf bordering the Hawasina Basin. A break in the sedimentation characterises the Late Permian. The basal Triassic shows a steady transgression and the breccias may record a distinct gravitational collapse of platform margins linked with sea-level low stand at the end of Induan time (late Dienerian-basal Smithian). delta(13)C(carb) isotopic analyses were performed and yield typical Permian values of around 4parts per thousand for the Reefal Limestone, with a strong negative shift across the Permian-Triassic boundary. During the Griesbachian values shift positively from 0.5 to 3.1parts per thousand parallel to an increase in faunal diversity and probably primary productivity. The detailed faunal analysis and the discovery of an unexpected diversity give,us a new understanding of the recovery of the Early Triassic marine ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on new paleontological discoveries that have come to light while working on a Permian "paieobotanical" transect. from Oman to Central Morocco, In the Huqf area, the continental plant bearing "Gharif" Formation is bracketed by two welt dated marine Formations, providing new age constraint for the discovered "mixed" paleoHora, The newly named KubergarH;Jian'Murgabian "Gharif Paleoflora" is of outstanding paleogeographic .ignificance, Gondwanan, Cathaysian and Euramerian elements are found to be associated, The understanding of the kinematics of the Permian vegetal cover lead us to test the proposed Peri-Tethyan paleogeographical contours

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moissanite (natural SiC) has been recovered from podiform chromitites of several ophiolite complexes, including the Luobusa and Donqiao ophiolites in Tibet, the Semail ophiolite in Oman and the United Arab Emirates, and the Ray-Iz ophiolite of the Polar Urals, Russia. Taking these new occurrences with the numerous earlier reports of moissanite in diamondiferous kimberlites leads to the conclusion that natural SiC is a widespread mineral in the Earth's mantle, which implies at least locally extremely low redox conditions. The ophiolite moissanite grains are mostly fragments (20 to 150 mu m) with one or more crystal faces, but some euhedral hexagonal grains have also been recovered. Twinned crystals are common in chromitites from the Luobusa ophiolite. The moissanite is rarely colorless, more commonly light bluish-gray to blue or green. Many grains contain inclusions of native Si and Fe-Si alloys (FeSi(2), Fe(3)Si(7)). Secondary ion mass spectrometric (SIMS) analysis shows that the ophiolite-hosted moissanite has a distinctive (13)C-depleted isotopic composition (delta(13)C from -18 to -35 parts per thousand, n=36), much lighter than the main carbon reservoir in the upper mantle (delta(13)C near -5 parts per thousand). The compiled data from moissanite from kimberlites and other mantle settings share the characteristic of strongly (13)C-depleted isotopic composition. This suggests that moissanite originates from a separate carbon reservoir in the mantle or that its formation involved strong isotopic fractionation. The degree of fractionation needed to produce the observed moissanite compositions from the main C-reservoir would be unrealistically large at the high temperatures required for moissanite formation. Subduction of biogenic carbonaceous material could potentially satisfy both the unusual isotopic and redox constraints on moissanite formation, but this material would need to stay chemically isolated from the upper mantle until it reached the high-T stability field of moissanite. The origin of moissanite in the mantle is still unsolved, but all evidence from the upper mantle indicates that it cannot have formed there, barring special and local redox conditions. We suggest, alternatively, that moissanite may have formed in the lower mantle, where the existence of (13)C-depleted carbon is strongly supported by studies of extraterrestrial carbon (Mars, Moon, meteorites). (C) 2009 Elsevier B. V. All rights reserved.