132 resultados para Olfactory Recognition
em Université de Lausanne, Switzerland
Resumo:
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate chemical communication between neurons at synapses. A variant iGluR subfamily, the Ionotropic Receptors (IRs), was recently proposed to detect environmental volatile chemicals in olfactory cilia. Here, we elucidate how these peripheral chemosensors have evolved mechanistically from their iGluR ancestors. Using a Drosophila model, we demonstrate that IRs act in combinations of up to three subunits, comprising individual odor-specific receptors and one or two broadly expressed coreceptors. Heteromeric IR complex formation is necessary and sufficient for trafficking to cilia and mediating odor-evoked electrophysiological responses in vivo and in vitro. IRs display heterogeneous ion conduction specificities related to their variable pore sequences, and divergent ligand-binding domains function in odor recognition and cilia localization. Our results provide insights into the conserved and distinct architecture of these olfactory and synaptic ion channels and offer perspectives into the use of IRs as genetically encoded chemical sensors. VIDEO ABSTRACT:
Resumo:
Inbreeding avoidance is predicted to induce sex biases in dispersal. But which sex should disperse? In polygynous species, females pay higher costs to inbreeding and thus might be expected to disperse more, but empirical evidence consistently reveals male biases. Here, we show that theoretical expectations change drastically if females are allowed to avoid inbreeding via kin recognition. At high inbreeding loads, females should prefer immigrants over residents, thereby boosting male dispersal. At lower inbreeding loads, by contrast, inclusive fitness benefits should induce females to prefer relatives, thereby promoting male philopatry. This result points to disruptive effects of sexual selection. The inbreeding load that females are ready to accept is surprisingly high. In absence of search costs, females should prefer related partners as long as delta<r/(1+r) where r is relatedness and delta is the fecundity loss relative to an outbred mating. This amounts to fitness losses up to one-fifth for a half-sib mating and one-third for a full-sib mating, which lie in the upper range of inbreeding depression values currently reported in natural populations. The observation of active inbreeding avoidance in a polygynous species thus suggests that inbreeding depression exceeds this threshold in the species under scrutiny or that inbred matings at least partly forfeit other mating opportunities for males. Our model also shows that female choosiness should decline rapidly with search costs, stemming from, for example, reproductive delays. Species under strong time constraints on reproduction should thus be tolerant of inbreeding.
Resumo:
We conducted an experiment to assess the use of olfactory traces for spatial orientation in an open environment in rats, Rattus norvegicus. We trained rats to locate a food source at a fixed location from different starting points, in the presence or absence of visual information. A single food source was hidden in an array of 19 petri dishes regularly arranged in an open-field arena. Rats were trained to locate the food source either in white light (with full access to distant visuospatial information) or in darkness (without any visual information). In both cases, the goal was in a fixed location relative to the spatial frame of reference. The results of this experiment revealed that the presence of noncontrolled olfactory traces coherent with the spatial frame of reference enables rats to locate a unique position as accurately in darkness as with full access to visuospatial information. We hypothesize that the olfactory traces complement the use of other orientation mechanisms, such as path integration or the reliance on visuospatial information. This experiment demonstrates that rats can rely on olfactory traces for accurate orientation, and raises questions about the establishment of such traces in the absence of any other orientation mechanism. Copyright 1998 The Association for the Study of Animal Behaviour.
Resumo:
The membrane-associated protein SCG10 is expressed specifically by neuronal cells. Recent experiments have suggested that it promotes neurite outgrowth by increasing microtubule dynamics in growth cones. SCG10 is related to the ubiquitous but neuron-enriched cytosolic protein stathmin. To better understand the role played by SCG10 and stathmin in vivo, we have analyzed the expression and localization of these proteins in both the olfactory epithelium and the olfactory bulb in developing and adult rats, as well as in adult bulbectomized rats. The olfactory epithelium is exceptional in that olfactory receptor neurons constantly regenerate and reinnervate the olfactory bulb throughout animal life-span. SCG10 and stathmin expression in the olfactory receptor neurons was found to be regulated during embryonic and postnatal development and to correlate with neuronal maturation. Whereas SCG10 expression was restricted to immature olfactory receptor neurons (GAP-43-positive, olfactory marker protein-negative), stathmin was also expressed by the basal cells. In the olfactory bulb of postnatal and adult rats, a moderate to strong SCG10 immunoreactivity was present in the olfactory nerve layer, whereas no labeling was detected in the glomerular layer. Olfactory glomeruli also showed no apparent immunoreactivity for several cytoskeletal proteins such as tubulin and microtubule-associated proteins. In unilaterally bulbectomized rats, SCG10 and stathmin were seen to be up-regulated in the regenerating olfactory epithelium at postsurgery stages corresponding to olfactory axon regeneration. Our data strongly suggest that, in vivo, both SCG10 and stathmin may play a role in axonal outgrowth during ontogenesis as well as during axonal regeneration.
Resumo:
The aim of the present study was to assess the influence of local environmental olfactory cues on place learning in rats. We developed a new experimental design allowing the comparison of the use of local olfactory and visual cues in spatial and discrimination learning. We compared the effect of both types of cues on the discrimination of a single food source in an open-field arena. The goal was either in a fixed or in a variable location, and could be indicated by local olfactory and/or visual cues. The local cues enhanced the discrimination of the goal dish, whether it was in a fixed or in a variable location. However, we did not observe any overshadowing of the spatial information by the local olfactory or visual cue. Rats relied primarily on distant visuospatial information to locate the goal, neglecting local information when it was in conflict with the spatial information.
Resumo:
Brittle cornea syndrome (BCS) is an autosomal recessive disorder characterised by extreme corneal thinning and fragility. Corneal rupture can therefore occur either spontaneously or following minimal trauma in affected patients. Two genes, ZNF469 and PRDM5, have now been identified, in which causative pathogenic mutations collectively account for the condition in nearly all patients with BCS ascertained to date. Therefore, effective molecular diagnosis is now available for affected patients, and those at risk of being heterozygous carriers for BCS. We have previously identified mutations in ZNF469 in 14 families (in addition to 6 reported by others in the literature), and in PRDM5 in 8 families (with 1 further family now published by others). Clinical features include extreme corneal thinning with rupture, high myopia, blue sclerae, deafness of mixed aetiology with hypercompliant tympanic membranes, and variable skeletal manifestations. Corneal rupture may be the presenting feature of BCS, and it is possible that this may be incorrectly attributed to non-accidental injury. Mainstays of management include the prevention of ocular rupture by provision of protective polycarbonate spectacles, careful monitoring of visual and auditory function, and assessment for skeletal complications such as developmental dysplasia of the hip. Effective management depends upon appropriate identification of affected individuals, which may be challenging given the phenotypic overlap of BCS with other connective tissue disorders.
Resumo:
Interleukin 1 beta (IL-1 beta) is a potent proinflammatory factor during viral infection. Its production is tightly controlled by transcription of Il1b dependent on the transcription factor NF-kappaB and subsequent processing of pro-IL-1 beta by an inflammasome. However, the sensors and mechanisms that facilitate RNA virus-induced production of IL-1 beta are not well defined. Here we report a dual role for the RNA helicase RIG-I in RNA virus-induced proinflammatory responses. Whereas RIG-I-mediated activation of NF-kappaB required the signaling adaptor MAVS and a complex of the adaptors CARD9 and Bcl-10, RIG-I also bound to the adaptor ASC to trigger caspase-1-dependent inflammasome activation by a mechanism independent of MAVS, CARD9 and the Nod-like receptor protein NLRP3. Our results identify the CARD9-Bcl-10 module as an essential component of the RIG-I-dependent proinflammatory response and establish RIG-I as a sensor able to activate the inflammasome in response to certain RNA viruses.
Resumo:
This work compares the structural/dynamics features of the wild-type alb-adrenergic receptor (AR) with those of the D142A active mutant and the agonist-bound state. The two active receptor forms were compared in their isolated states as well as in their ability to form homodimers and to recognize the G alpha q beta 1 gamma 2 heterotrimer. The analysis of the isolated structures revealed that, although the mutation- and agonist-induced active states of the alpha 1b-AR are different, they, however, share several structural peculiarities including (a) the release of some constraining interactions found in the wild-type receptor and (b) the opening of a cytosolic crevice formed by the second and third intracellular loops and the cytosolic extensions of helices 5 and 6. Accordingly, also their tendency to form homodimers shows commonalties and differences. In fact, in both the active receptor forms, helix 6 plays a crucial role in mediating homodimerization. However, the homodimeric models result from different interhelical assemblies. On the same line of evidence, in both of the active receptor forms, the cytosolic opened crevice recognizes similar domains on the G protein. However, the docking solutions are differently populated and the receptor-G protein preorientation models suggest that the final complexes should be characterized by different interaction patterns.
Resumo:
To sense myriad environmental odors, animals have evolved multiple, large families of divergent olfactory receptors. How and why distinct receptor repertoires and their associated circuits are functionally and anatomically integrated is essentially unknown. We have addressed these questions through comprehensive comparative analysis of the Drosophila olfactory subsystems that express the ionotropic receptors (IRs) and odorant receptors (ORs). We identify ligands for most IR neuron classes, revealing their specificity for select amines and acids, which complements the broader tuning of ORs for esters and alcohols. IR and OR sensory neurons exhibit glomerular convergence in segregated, although interconnected, zones of the primary olfactory center, but these circuits are extensively interdigitated in higher brain regions. Consistently, behavioral responses to odors arise from an interplay between IR- and OR-dependent pathways. We integrate knowledge on the different phylogenetic and developmental properties of these receptors and circuits to propose models for the functional contributions and evolution of these distinct olfactory subsystems.
Resumo:
A right-handed man developed a sudden transient, amnestic syndrome associated with bilateral hemorrhage of the hippocampi, probably due to Urbach-Wiethe disease. In the 3rd month, despite significant hippocampal structural damage on imaging, only a milder degree of retrograde and anterograde amnesia persisted on detailed neuropsychological examination. On systematic testing of recognition of facial and vocal expression of emotion, we found an impairment of the vocal perception of fear, but not that of other emotions, such as joy, sadness and anger. Such selective impairment of fear perception was not present in the recognition of facial expression of emotion. Thus emotional perception varies according to the different aspects of emotions and the different modality of presentation (faces versus voices). This is consistent with the idea that there may be multiple emotion systems. The study of emotional perception in this unique case of bilateral involvement of hippocampus suggests that this structure may play a critical role in the recognition of fear in vocal expression, possibly dissociated from that of other emotions and from that of fear in facial expression. In regard of recent data suggesting that the amygdala is playing a role in the recognition of fear in the auditory as well as in the visual modality this could suggest that the hippocampus may be part of the auditory pathway of fear recognition.
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia Conclusion Based on these data, we proposed a model for PSIP1 promoter activity involving a complex interplay between yet undefined regulatory elements to modulate gene expression.
Resumo:
Pyochelin (Pch) and enantiopyochelin (EPch) are enantiomeric siderophores, with three chiral centers, produced under iron limitation conditions by Pseudomonas aeruginosa and Pseudomonas fluorescens , respectively. After iron chelation in the extracellular medium, Pch-Fe and EPch-Fe are recognized and transported by their specific outer-membrane transporters: FptA in P. aeruginosa and FetA in P. fluorescens . Structural analysis of FetA-EPch-Fe and FptA-Pch-Fe, combined with mutagenesis and docking studies revealed the structural basis of the stereospecific recognition of these enantiomers by their respective transporters. Whereas FetA and FptA have a low sequence identity but high structural homology, the Pch and EPch binding pockets do not share any structural homology, but display similar physicochemical properties. The stereospecific recognition of both enantiomers by their corresponding transporters is imposed by the configuration of the siderophore's C4'' and C2'' chiral centers. This recognition involves specific hydrogen bonds between the Arg91 guanidinium group and EPch-Fe for FetA and between the Leu117-Leu116 main chain and Pch-Fe for FptA. FetA and FptA are the first membrane receptors to be structurally described with opposite binding enantioselectivities for their ligands, giving insights into the structural basis of their enantiospecificity.
Resumo:
Background: Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly.Methodology/Principal Findings: Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo.Conclusion: Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors.
Resumo:
The Cinque Torri group (Cortina d'Ampezzo, Italy) is an articulated system of unstable carbonatic rock monoliths located in a very important tourism area and therefore characterized by a significant risk. The instability phenomena involved represent an example of lateral spreading developed over a larger deep seated gravitational slope deformation (DSGSD) area. After the recent fall of a monolith of more than 10 000 m3, a scientific study was initiated to monitor the more unstable sectors and to characterize the past movements as a fundamental tool for predicting future movements and hazard assessment. To achieve greater insight on the ongoing lateral spreading process, a method for a quantitative analysis of rotational movements associated with the lateral spreading has been developed, applied and validated. The method is based on: i) detailed geometrical characterization of the area by means of laser scanner techniques; ii) recognition of the discontinuity sets and definition of a reference frame for each set, iii) correlation between the obtained reference frames related to a specific sector and a stable external reference frame, and iv) determination of the 3D rotations in terms of Euler angles to describe the present settlement of the Cinque Torri system with respect to the surrounding stable areas. In this way, significant information on the processes involved in the fragmentation and spreading of a former dolomitic plateau into different rock cliffs has been gained. The method is suitable to be applied to similar case studies.
Resumo:
Objective: It was the aim of this study to investigate facial emotion recognition (FER) in the elderly with cognitive impairment. Method: Twelve patients with Alzheimer's disease (AD) and 12 healthy control subjects were asked to name dynamic or static pictures of basic facial emotions using the Multimodal Emotion Recognition Test and to assess the degree of their difficulty in the recognition task, while their electrodermal conductance was registered as an unconscious processing measure. Results: AD patients had lower objective recognition performances for disgust and fear, but only disgust was accompanied by decreased subjective FER in AD patients. The electrodermal response was similar in all groups. No significant effect of dynamic versus static emotion presentation on FER was found. Conclusion: Selective impairment in recognizing facial expressions of disgust and fear may indicate a nonlinear decline in FER capacity with increasing cognitive impairment and result from progressive though specific damage to neural structures engaged in emotional processing and facial emotion identification. Although our results suggest unchanged unconscious FER processing with increasing cognitive impairment, further investigations on unconscious FER and self-awareness of FER capacity in neurodegenerative disorders are required.