130 resultados para Object-Specific Authorization Protocol
em Université de Lausanne, Switzerland
Resumo:
Humans like some colours and dislike others, but which particular colours and why remains to be understood. Empirical studies on colour preferences generally targeted most preferred colours, but rarely least preferred (disliked) colours. In addition, findings are often based on general colour preferences leaving open the question whether results generalise to specific objects. Here, 88 participants selected the colours they preferred most and least for three context conditions (general, interior walls, t-shirt) using a high-precision colour picker. Participants also indicated whether they associated their colour choice to a valenced object or concept. The chosen colours varied widely between individuals and contexts and so did the reasons for their choices. Consistent patterns also emerged, as most preferred colours in general were more chromatic, while for walls they were lighter and for t-shirts they were darker and less chromatic compared to least preferred colours. This meant that general colour preferences could not explain object specific colour preferences. Measures of the selection process further revealed that, compared to most preferred colours, least preferred colours were chosen more quickly and were less often linked to valenced objects or concepts. The high intra- and inter-individual variability in this and previous reports furthers our understanding that colour preferences are determined by subjective experiences and that most and least preferred colours are not processed equally.
Resumo:
Seven tesla (T) MR imaging is potentially promising for the morphologic evaluation of coronary arteries because of the increased signal-to-noise ratio compared to lower field strengths, in turn allowing improved spatial resolution, improved temporal resolution, or reduced scanning times. However, there are a large number of technical challenges, including the commercial 7 T systems not being equipped with homogeneous body radiofrequency coils, conservative specific absorption rate constraints, and magnified sample-induced amplitude of radiofrequency field inhomogeneity. In the present study, an initial attempt was made to address these challenges and to implement coronary MR angiography at 7 T. A single-element radiofrequency transmit and receive coil was designed and a 7 T specific imaging protocol was implemented, including significant changes in scout scanning, contrast generation, and navigator geometry compared to current protocols at 3 T. With this methodology, the first human coronary MR images were successfully obtained at 7 T, with both qualitative and quantitative findings being presented.
Resumo:
Aim of the present article was to perform three-dimensional (3D) single photon emission tomography-based dosimetry in radioimmunotherapy (RIT) with (90)Y-ibritumomab-tiuxetan. A custom MATLAB-based code was used to elaborate 3D images and to compare average 3D doses to lesions and to organs at risk (OARs) with those obtained with planar (2D) dosimetry. Our 3D dosimetry procedure was validated through preliminary phantom studies using a body phantom consisting of a lung insert and six spheres with various sizes. In phantom study, the accuracy of dose determination of our imaging protocol decreased when the object volume decreased below 5 mL, approximately. The poorest results were obtained for the 2.58 mL and 1.30 mL spheres where the dose error evaluated on corrected images with regard to the theoretical dose value was -12.97% and -18.69%, respectively. Our 3D dosimetry protocol was subsequently applied on four patients before RIT with (90)Y-ibritumomab-tiuxetan for a total of 5 lesions and 4 OARs (2 livers, 2 spleens). In patient study, without the implementation of volume recovery technique, tumor absorbed doses calculated with the voxel-based approach were systematically lower than those calculated with the planar protocol, with average underestimation of -39% (range from -13.1% to -62.7%). After volume recovery, dose differences reduce significantly, with average deviation of -14.2% (range from -38.7.4% to +3.4%, 1 overestimation, 4 underestimations). Organ dosimetry in one case overestimated, in the other underestimated the dose delivered to liver and spleen. However, both for 2D and 3D approach, absorbed doses to organs per unit administered activity are comparable with most recent literature findings.
Resumo:
Contact stains recovered at break-in crime scenes are frequently characterized by mixtures of DNA from several persons. Broad knowledge on the relative contribution of DNA left behind by different users overtime is of paramount importance. Such information might help crime investigators to robustly evaluate the possibility of detecting a specific (or known) individual's DNA profile based on the type and history of an object. To address this issue, a contact stain simulation-based protocol was designed. Fourteen volunteers either acting as first or second object's users were recruited. The first user was required to regularly handle/wear 9 different items during an 8-10-day period, whilst the second user for 5, 30 and 120 min, in three independent simulation sessions producing a total of 231 stains. Subsequently, the relative DNA profile contribution of each individual pair was investigated. Preliminary results showed a progressive increase of the percentage contribution of the second user compared to the first. Interestingly, the second user generally became the major DNA contributor when most objects were handled/worn for 120 min, Furthermore, the observation of unexpected additional alleles will then prompt the investigation of indirect DNA transfer events.
Resumo:
Primary sensory cortex discriminates incoming sensory information and generates multiple processing streams toward other cortical areas. However, the underlying cellular mechanisms remain unknown. Here, by making whole-cell recordings in primary somatosensory barrel cortex (S1) of behaving mice, we show that S1 neurons projecting to primary motor cortex (M1) and those projecting to secondary somatosensory cortex (S2) have distinct intrinsic membrane properties and exhibit markedly different membrane potential dynamics during behavior. Passive tactile stimulation evoked faster and larger postsynaptic potentials (PSPs) in M1-projecting neurons, rapidly driving phasic action potential firing, well-suited for stimulus detection. Repetitive active touch evoked strongly depressing PSPs and only transient firing in M1-projecting neurons. In contrast, PSP summation allowed S2-projecting neurons to robustly signal sensory information accumulated during repetitive touch, useful for encoding object features. Thus, target-specific transformation of sensory-evoked synaptic potentials by S1 projection neurons generates functionally distinct output signals for sensorimotor coordination and sensory perception.
Resumo:
BACKGROUND: Protein-energy wasting is a frequent and debilitating condition in maintenance dialysis. We randomly tested if an energy-dense, phosphate-restricted, renal-specific oral supplement could maintain adequate nutritional intake and prevent malnutrition in maintenance haemodialysis patients with insufficient intake. METHODS: Eighty-six patients were assigned to a standard care (CTRL) group or were prescribed two 125-ml packs of Renilon 7.5(R) daily for 3 months (SUPP). Dietary intake, serum (S) albumin, prealbumin, protein nitrogen appearance (nPNA), C-reactive protein, subjective global assessment (SGA) and quality of life (QOL) were recorded at baseline and after 3 months. RESULTS: While intention to treat analysis (ITT) did not reveal strong statistically significant changes in dietary intake between groups, per protocol (PP) analysis showed that the SUPP group increased protein (P < 0.01) and energy (P < 0.01) intakes. In contrast, protein and energy intakes further deteriorated in the CTRL group (PP). Although there was no difference in serum albumin and prealbumin changes between groups, in the total population serum albumin and prealbumin changes were positively associated with the increment in protein intake (r = 0.29, P = 0.01 and r = 0.27, P = 0.02, respectively). The SUPP group did not increase phosphate intake, phosphataemia remained unaffected, and the use of phosphate binders remained stable or decreased. The SUPP group exhibited improved SGA and QOL (P < 0.05). CONCLUSION: This study shows that providing maintenance haemodialysis patients with insufficient intake with a renal-specific oral supplement may prevent deterioration in nutritional indices and QOL without increasing the need for phosphate binders.
Resumo:
In vivo imaging of green fluorescent protein (GFP)-labeled neurons in the intact brain is being used increasingly to study neuronal plasticity. However, interpreting the observed changes as modifications in neuronal connectivity needs information about synapses. We show here that axons and dendrites of GFP-labeled neurons imaged previously in the live mouse or in slice preparations using 2-photon laser microscopy can be analyzed using light and electron microscopy, allowing morphological reconstruction of the synapses both on the imaged neurons, as well as those in the surrounding neuropil. We describe how, over a 2-day period, the imaged tissue is fixed, sliced and immuno-labeled to localize the neurons of interest. Once embedded in epoxy resin, the entire neuron can then be drawn in three dimensions (3D) for detailed morphological analysis using light microscopy. Specific dendrites and axons can be further serially thin sectioned, imaged in the electron microscope (EM) and then the ultrastructure analyzed on the serial images.
Resumo:
Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5-conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14(+)CD16(-) monocytes (here termed "Mo1" subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX(3)CR1, whereas "nonclassical" CD14(lo)CD16(+) monocytes (Mo3) essentially showed the inverse expression pattern. CD14(+)CD16(+) monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas "nonclassical" monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX(3)CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.
Resumo:
The production of object and action words can be dissociated in aphasics, yet their anatomical correlates have been difficult to distinguish in functional imaging studies. To investigate the extent to which the cortical neural networks underlying object- and action-naming processing overlap, we performed electrostimulation mapping (ESM), which is a neurosurgical mapping technique routinely used to examine language function during brain-tumor resections. Forty-one right-handed patients who had surgery for a brain tumor were asked to perform overt naming of object and action pictures under stimulation. Overall, 73 out of the 633 stimulated cortical sites (11.5%) were associated with stimulation-induced language interferences. These interference sites were very much localized (<1 cm(2) ), and showed substantial variability across individuals in their exact localization. Stimulation interfered with both object and action naming over 44 sites, whereas it specifically interfered with object naming over 19 sites and with action naming over 10 sites. Specific object-naming sites were mainly identified in Broca's area (Brodmann area 44/45) and the temporal cortex, whereas action-naming specific sites were mainly identified in the posterior midfrontal gyrus (Brodmann area 6/9) and Broca's area (P = 0.003 by the Fisher's exact test). The anatomical loci we emphasized are in line with a cortical distinction between objects and actions based on conceptual/semantic features, so the prefrontal/premotor cortex would preferentially support sensorimotor contingencies associated with actions, whereas the temporal cortex would preferentially underpin (functional) properties of objects. Hum Brain Mapp 35:429-443, 2014. © 2012 Wiley Periodicals, Inc.
Resumo:
Evidence from human and non-human primate studies supports a dual-pathway model of audition, with partially segregated cortical networks for sound recognition and sound localisation, referred to as the What and Where processing streams. In normal subjects, these two networks overlap partially on the supra-temporal plane, suggesting that some early-stage auditory areas are involved in processing of either auditory feature alone or of both. Using high-resolution 7-T fMRI we have investigated the influence of positional information on sound object representations by comparing activation patterns to environmental sounds lateralised to the right or left ear. While unilaterally presented sounds induced bilateral activation, small clusters in specific non-primary auditory areas were significantly more activated by contra-laterally presented stimuli. Comparison of these data with histologically identified non-primary auditory areas suggests that the coding of sound objects within early-stage auditory areas lateral and posterior to primary auditory cortex AI is modulated by the position of the sound, while that within anterior areas is not.
Resumo:
Using head-mounted eye tracker material, we assessed spatial recognition abilities (e.g., reaction to object permutation, removal or replacement with a new object) in participants with intellectual disabilities. The "Intellectual Disabilities (ID)" group (n=40) obtained a score totalling a 93.7% success rate, whereas the "Normal Control" group (n=40) scored 55.6% and took longer to fix their attention on the displaced object. The participants with an intellectual disability thus had a more accurate perception of spatial changes than controls. Interestingly, the ID participants were more reactive to object displacement than to removal of the object. In the specific test of novelty detection, however, the scores were similar, the two groups approaching 100% detection. Analysis of the strategies expressed by the ID group revealed that they engaged in more systematic object checking and were more sensitive than the control group to changes in the structure of the environment. Indeed, during the familiarisation phase, the "ID" group explored the collection of objects more slowly, and fixed their gaze for a longer time upon a significantly lower number of fixation points during visual sweeping.
Resumo:
The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4(+) and CD8(+) T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8(+) T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8(+) T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8(+) T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Resumo:
PURPOSE: At 7 Tesla (T), conventional static field (B0 ) projection mapping techniques, e.g., FASTMAP, FASTESTMAP, lead to elevated specific absorption rates (SAR), requiring longer total acquisition times (TA). In this work, the series of adiabatic pulses needed for slab selection in FASTMAP is replaced by a single two-dimensional radiofrequency (2D-RF) pulse to minimize TA while ensuring equal shimming performance. METHODS: Spiral gradients and 2D-RF pulses were designed to excite thin slabs in the small tip angle regime. The corresponding selection profile was characterized in phantoms and in vivo. After optimization of the shimming protocol, the spectral linewidths obtained after 2D localized shimming were compared with conventional techniques and published values from (Emir et al NMR Biomed 2012;25:152-160) in six different brain regions. RESULTS: Results on healthy volunteers show no significant difference (P > 0.5) between the spectroscopic linewidths obtained with the adiabatic (TA = 4 min) and the new low-SAR and time-efficient FASTMAP sequence (TA = 42 s). The SAR can be reduced by three orders of magnitude and TA accelerated six times without impact on the shimming performances or quality of the resulting spectra. CONCLUSION: Multidimensional pulses can be used to minimize the RF energy and time spent for automated shimming using projection mapping at high field. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
The detection of BK polyomavirus (BK virus, BKV) in kidney tissue is hampered by nonspecificity of antibodies suited to immunohistochemistry, and nonspecific background with in situ hybridization. The biotin-labeled DNA probe that is commercially available (Enzo Life Sciences, Inc.) shows good signal, but the intrinsic background in kidney tissue is high. We determined that the intrinsic background is due to endogenous biotin or biotin-binding activity in the renal tubular epithelium. Neither antibody blocking procedures nor an avidin/biotin block were entirely satisfactory for eliminating this background staining. We developed a digoxigenin-labeled DNA probe, and protocol, for detecting BK virus in formalin-fixed, paraffin embedded, kidney tissue obtained at autopsy. The hybridization signal is strong and there is no perceptible background staining. Eleven negative control kidneys all failed to hybridize. Conditions for low stringency hybridization may be employed, detecting both the related JC polyomavirus and BKV. Alternatively, high stringency hybridization conditions may be utilized, detecting BKV only. BK associated tubular necrosis is clearly demonstrated in two cases of BK nephritis.
Resumo:
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.