4 resultados para Obispado de Gerona
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. METHODS: Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATP) of vastus lateralis was determined in vivo by P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O consumption) was characterized using ATP per St3 respiration (ATP/St3). RESULTS: In vitro St3 respiration was significantly correlated with in vivo ATP (r = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO peak (r = .33, p = .006). ATP (r = .158, p = .03) and VO peak (r = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATP/St3 and VO peak in a multiple linear regression model improved the prediction of preferred walking speed (r = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. CONCLUSIONS: Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.
Resumo:
BACKGROUND: Frailty is an indicator of health status in old age. Its frequency has been described mainly for North America; comparable data from other countries are lacking. Here we report on the prevalence of frailty in 10 European countries included in a population-based survey. METHODS: Cross-sectional analysis of 18,227 randomly selected community-dwelling individuals 50 years of age and older, enrolled in the Survey of Health, Aging and Retirement in Europe (SHARE) in 2004. Complete data for assessing a frailty phenotype (exhaustion, shrinking, weakness, slowness, and low physical activity) were available for 16,584 participants. Prevalences of frailty and prefrailty were estimated for individuals 50-64 years and 65 years of age and older from each country. The latter group was analyzed further after excluding disabled individuals. We estimated country effects in this subset using multivariate logistic regression models, controlling first for age, gender, and then demographics and education. RESULTS: The proportion of frailty (three to five criteria) or prefrailty (one to two criteria) was higher in southern than in northern Europe. International differences in the prevalences of frailty and prefrailty for 65 years and older group persisted after excluding the disabled. Demographic characteristics did not account for international differences; however, education was associated with frailty. Controlling for education, age and gender diminished the effects of residing in Italy and Spain. CONCLUSIONS: A higher prevalence of frailty in southern countries is consistent with previous findings of a north-south gradient for other health indicators in SHARE. Our data suggest that socioeconomic factors like education contribute to these differences in frailty and prefrailty.
Resumo:
BACKGROUND: Fatigability increases while the capacity for mitochondrial energy production tends to decrease significantly with age. Thus, diminished mitochondrial function may contribute to higher levels of fatigability in older adults. METHODS: The relationship between fatigability and skeletal muscle mitochondrial function was examined in 30 participants aged 78.5 ± 5.0 years (47% female, 93% white), with a body mass index of 25.9 ± 2.7 kg/m(2) and usual gait-speed of 1.2 ± 0.2 m/s. Fatigability was defined using rating of perceived exertion (6-20 point Borg scale) after a 5-minute treadmill walk at 0.72 m/s. Phosphocreatine recovery in the quadriceps was measured using (31)P magnetic resonance spectroscopy and images of the quadriceps were captured to calculate quadriceps volume. ATPmax (mM ATP/s) and oxidative capacity of the quadriceps (ATPmax·Quadriceps volume) were calculated. Peak aerobic capacity (VO2peak) was measured using a modified Balke protocol. RESULTS: ATPmax·Quadriceps volume was associated with VO2peak and was 162.61mM ATP·mL/s lower (p = .03) in those with high (rating of perceived exertion ≥10) versus low (rating of perceived exertion ≤9) fatigability. Participants with high fatigability required a significantly higher proportion of VO2peak to walk at 0.72 m/s compared with those with low fatigability (58.7 ± 19.4% vs 44.9 ± 13.2%, p < .05). After adjustment for age and sex, higher ATPmax was associated with lower odds of having high fatigability (odds ratio: 0.34, 95% CI: 0.11-1.01, p = .05). CONCLUSIONS: Lower capacity for oxidative phosphorylation in the quadriceps, perhaps by contributing to lower VO2peak, is associated with higher fatigability in older adults.