97 resultados para Obesity - diet therapy
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Black women are at greater risk of obesity than are white women, perhaps because of their lower levels of physical activity. OBJECTIVE: We compared free-living activity energy expenditure (AEE) in sedentary white and black women (in overweight and normal-weight states) and in never-overweight control subjects. DESIGN: Subjects included 46 women (23 white, 23 black) studied while overweight and after reaching a normal weight and 38 female control subjects (23 white, 15 black). Diet, without exercise training, resulted in a mean weight loss of 13 kg and a body mass index (in kg/m(2)) < 25. Body composition, sleeping energy expenditure, free-living total energy expenditure, and the energy cost of activity and aerobic capacity were assessed before and after weight loss under 4-wk, diet-controlled, weight-stable conditions and in the control subjects. AEE was defined as above-sleep energy expenditure. RESULTS: No significant racial differences in body composition, before or after weight loss, were found. After weight loss, AEE and aerobic capacity increased in the white women and decreased in the black women (P < 0.05 and P < 0.02, respectively). After weight loss, but not before, the white women had a significantly higher mean AEE than did the black women (2448 +/- 979 and 1728 +/- 1373 kJ/d, respectively; P < 0.05), approximating AEEs in the white (2314 +/- 1105) and black (2310 +/- 1251) control subjects. CONCLUSIONS: Relative to the responses of the white women to diet-induced weight loss, the black women became less fit and less physically active. Induction of a normal body weight in overweight black women appeared to produce a more obesity-prone state, favoring weight relapse.
Resumo:
OBJECTIVE: To assess the effects, on food intake, body weight and body composition, of compliance to advice aiming at increasing the carbohydrate to fat ratio of the everyday diet without imposing voluntary restriction on the amount of food consumed. DESIGN: Eight moderately overweight women (body mass index > 27 kg/m2, relative body fat mass > 30%) received dietary advice during a 2 month period. Additionally, each evening the subjects had to consume a meal artificially enriched with 13C-glucose in order to assess their compliance from the 13CO2 enrichment in expired air. MEASUREMENTS: Dietary intakes, body weight, body composition and individual compliance. RESULTS: The energy derived from fat decreased from 44 +/- 1% to 31 +/- 1% and the proportion of carbohydrate increased from 38 +/- 2% to 50 +/- 1%, whereas the absolute carbohydrate intake remained constant (182 +/- 18 g/d). Energy intake decreased by 1569 +/- 520 kJ/d. There was a net loss of fat mass (1.7 +/- 0.7 kg, P = 0.016) with fat free mass maintenance. Dietary compliance ranged from 20 to 93% (mean: 60 +/- 8%) and was positively correlated to the loss of body fat mass. CONCLUSION: Advice aiming at increasing diet's carbohydrate to fat ratio induces a loss of fat mass with fat-free mass maintenance.
Resumo:
In 10 moderately obese women, 24-h energy expenditure (24EE) was measured in a respiration chamber under four conditions: 1) before weight loss (body weight = 77.9 kg), 2) during weight loss (63.9 kg), 3) after realimentation (62.5 kg), and 4) 6-15 mo after the study diet with ad libitum diet (67.7 kg). The 14 +/- 8 kg (mean +/- SD) weight loss produced a decrease in 24EE of 1498 +/- 1138 kJ/d (P < 0.001), ie, a decrease of weight of 107 kJ.kg body wt-1.d-1. The subsequent 24EE (conditions 3 and 4) remained lower than the value before weight loss. A significant correlation was found between changes before and after weight regain in basal respiratory quotient (RQ) and the spontaneous rate of body-weight gain after cessation of the period of low energy intake (r = 0.89, P < 0.01); this suggests that the value of the postabsorptive RQ may be a predictor of relapse of weight gain. After discontinuation of the low energy diet, an elevated postabsorptive RQ shows that the endogenous lipid oxidation is low, a condition favoring weight gain.
Resumo:
Twenty-four hour energy expenditure (24 EE), resting metabolic rate (RMR), spontaneous physical activity and body composition were determined in 7 obese patients (5 females, 2 males, 174 +/- 9% IBW, 38 +/- 2% fat mass) on 2 different occasions: before weight reduction, and after 10 to 16 weeks on a hypocaloric diet as outpatients, the recommended energy intake varying from 3500 to 4700 kJ/day depending on the subject. Mean body weight loss was 12.6 +/- 1.9 kg, ie 13% of initial body weight, 72% being fat. Twenty-four hour energy expenditure (24 EE) was measured in a respiration chamber with all the subjects receiving 10418 kJ/d before weight reduction and an average of 3360 +/- 205 kJ/d while on the diet. When expressed in absolute values, both 24 EE and RMR decreased during the hypocaloric diet from 9819 +/- 442 to 8229 +/- 444 and from 7262 +/- 583 to 6591 +/- 547 kJ/d respectively. On the basis of fat-free-mass (FFM), 24 EE decreased from 168 +/- 6 to 148 +/- 5 kJ/kg FFM/d whereas RMR was unchanged (approximately 120 kJ/kg FFM/d). Approximately one half of the 24 EE reduction (1590 kJ/d) was accounted for by a decrease in RMR, the latter being mainly accounted for by a reduction in FFM. Most of the remaining decline in 24 EE can be explained by a decreased thermic effect of food, and by the reduced cost of physical activity mainly due to a lower body weight. Therefore, there seems little reason to evoke additional mechanisms to explain the decline in energy expenditure during dieting.
Resumo:
The magnitude of thermogenesis induced by a test meal (17% protein, 54% CHO, and 29% fat) was assessed using indirect calorimetry in six obese women before and after weight loss (mean loss: 11.2 kg) and compared with six nonobese matched controls at rest for 5 h and during and following graded moderate exercise on a bicycle ergometer at three workloads. The test meal contained 60% of the energy expended in basal state over 24 h (736-1020 kcal/meal according to the group). In obese subjects the net absolute increase in energy expenditure (delta EE) in response to the meal was similar between exercising and resting conditions (delta EE = 0.27 vs 0.32 kcal/min, respectively) but tended to be lower in obese women after weight loss (delta EE = 0.19 kcal/min while exercising and 0.25 kcal/min while resting, p less than 0.05) and in control subjects (delta EE = 0.16 vs. 0.25 kcal/min, respectively: p less than 0.05). These results show that the thermogenic response to a meal is not potentiated by moderate exercise.
Resumo:
The thermic effect of a meal (TEM) was measured in a group of 10 prepubertal obese children before (OB) and after (OA) weight reduction, and in a group of 10 age-matched control children (C) of normal body weight. Following a hypocaloric balanced diet for 6 +/- 1 months, the obese children lost 5.2 +/- 1.3 kg i.e. 11% of their initial body weight. The thermic response to the mixed liquid meal - fed at an energy level corresponding to 30% of the 24 h premeal resting metabolic rate - was found to be significantly lower in OB than in C children (61 +/- 25 kJ.3h-1 vs 79 +/- 21 kJ.3h-1, P less than 0.05), despite their higher test meal energy. After slimming, the TEM of obese children increased towards the controls' values (73 +/- 30 kJ.3h-1). These results support the hypothesis of the existence of a moderate thermogenic defect in some obese children which represents a consequence rather than an aetiological factor of obesity.
Resumo:
To assess the effect of weight loss on resting metabolic rate (RMR), the energy expenditure of eight obese prepubertal children (age 9 +/- 1 years; weight 48.7 +/- 9.1 kg; BMI 25.3 +/- 3.9) and of 14 age-matched children of normal body weight (age 9 +/- 1 years; weight 28.8 +/- 5.6 kg; BMI 16.5 +/- 1.7) was measured by indirect calorimetry. The obese children were reinvestigated after a mean weight loss of 5.4 +/- 1.2 kg induced by a six-months mixed hypocaloric diet. Before slimming, the obese group showed a higher daily energy intake than the control group (10.40 +/- 3.45 MJ/day vs 7.97 +/- 2.02 MJ/day respectively; P less than 0.05) but a similar value was observed per unit fat-free mass (FFM) (0.315 +/- 0.032 MJ/kgFFM/day vs 0.329 +/- 0.041 MJ/kgFFM/day respectively). The average RMR of the obese children was greater than that of the control group (5217 +/- 531 kJ/day vs 4477 +/- 506 kJ/day) but similar after adjusting for FFM (4728 +/- 3102 kJ/day vs 4899 +/- 3102 kJ/day). Weight loss resulted in a reduction in RMR (5217 +/- 531 kJ/day vs 4874 +/- 820 kJ/day), each kg of weight loss being accompanied by a decrease of RMR of 64 kJ (15.3 kcal) per day. The changes in RMR induced by weight loss paralleled the changes in FFM. No difference was found in average RQ in obese children vs controls (0.85 +/- 0.03 vs 0.87 +/- 0.03 respectively) and in the obese children before and after weight loss (0.87 +/- 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
As the prevalence of obesity and diabetes are continually increasing, the use of "false sugars" otherwise known as sweeteners, and their associated health issues are being more and more discussed. A higher sugared power, less calories as well as a moderated or non-existent effect on blood sugar would lead to believe that sweeteners are helpful. However, we CANNOT say that they are THE solution as they can contain calories, may have some undesired effects, and moreover they ease the conscience without actually allowing a weight loss with their sole use. They are to be used with judgment, wittingly and especially when comparing sweetened products. The sweetener myth is often far from reality. It is therefore important to give our patients the means to analyze their dietary intake with regard to their sweeteners ingestion.
Resumo:
In six young obese women (mean weight 85 +/- 3 kg) with a childhood history of obesity, and in six young nonobese women (mean weight 55 +/- 2 kg), the energy expenditure was measured during 24 h in a respiratory chamber with a maintenance energy intake. The next day, the thermogenic response to a mixed meal was investigated by using an open circuit indirect calorimetry hood system. In addition, five of the same obese women were similarly studied after a mean weight loss of 12.1 kg (14% of initial body weight) consecutive to an 11-wk hypocaloric diet (protein-supplemented modified fast). Expressed in absolute terms, the total 24 h and basal energy expenditures were found to be significantly greater in the obese (2208 +/- 105 and 1661 +/- 56 kcal/24 h, respectively) than in the controls (1746 +/- 61 and 1230 +/- 40 kcal/24 h, respectively). After weight loss, both the total 24-h and the basal energy expenditures were significantly reduced (2009 +/- 99 kcal/24 h and 1423 +/- 43 kcal/24 h respectively), but both values were still greater than that of the control subjects. The thermogenic response to the mixed meal (a liquid diet containing 17, 54, and 29% as protein, carbohydrate, and lipid calories, respectively, and an energy level determined to cover 60% of the basal energy expenditure computed for 24 h) was found to be significantly reduced in the obese as compared to controls (ie, 7.6 +/- 0.4% versus 9.5 +/- 0.4% of the energy content of the load, respectively, p less than 0.025). After weight loss, the postprandial thermogenesis of the obese was still markedly reduced (ie, 6.2 +/- 0.8%). Both before and after weight loss, the relative increase in diurnal urinary norepinephrine excretion was found to be lower in the obese than in controls, when compared to the nocturnal values. These results show that the greater 24 h energy expenditure of obese women is entirely due to their higher basal metabolic rate. The lower thermogenic response to the meal in the obese supports the concept of a thermogenic defect which can favor energy gain; furthermore, the unchanged response after weight loss in the obese suggests that the thermogenic defect may be a cause rather than a consequence of obesity.
Resumo:
BACKGROUND: Intraabdominal adipose tissue (IAAT) is the body fat depot most strongly related to disease risk. Weight reduction is advocated for overweight people to reduce total body fat and IAAT, although little is known about the effect of weight loss on abdominal fat distribution in different races. OBJECTIVE: We compared the effects of diet-induced weight loss on changes in abdominal fat distribution in white and black women. DESIGN: We studied 23 white and 23 black women, similar in age and body composition, in the overweight state [mean body mass index (BMI; in kg/m(2)): 28.8] and the normal-weight state (mean BMI: 24.0) and 38 never-overweight control women (mean BMI: 23.4). We measured total body fat by using a 4-compartment model, trunk fat by using dual-energy X-ray absorptiometry, and cross-sectional areas of IAAT (at the fourth and fifth lumbar vertebrae) and subcutaneous abdominal adipose tissue (SAAT) by using computed tomography. RESULTS: Weight loss was similar in white and black women (13.1 and 12.6 kg, respectively), as were losses of total fat, trunk fat, and waist circumference. However, white women lost more IAAT (P < 0.001) and less SAAT (P < 0.03) than did black women. Fat patterns regressed toward those of their respective control groups. Changes in waist circumference correlated with changes in IAAT in white women (r = 0.54, P < 0.05) but not in black women (r = 0.19, NS). CONCLUSIONS: Despite comparable decreases in total and trunk fat, white women lost more IAAT and less SAAT than did black women. Waist circumference was not a suitable surrogate marker for tracking changes in the visceral fat compartment in black women.
Resumo:
OBJECTIVE: Binge eating disorder represents a significant public health problem, with up to 50% of weight loss program participants displaying this disorder. In previous studies with orlistat, patients with binge eating disorder were excluded. The goal of this study was to assess the efficacy of orlistat in obese patients with binge eating disorder. RESEARCH METHODS AND PROCEDURES: Eighty-nine patients with clinically diagnosed binge eating disorder and a BMI > or = 30 kg/m2 were randomized in double-blind fashion to 24 weeks of treatment with 120 mg of orlistat or placebo three times daily, in combination with a mildly reduced-calorie diet. RESULTS: After 24 weeks, the mean weight loss from baseline for orlistat-treated patients was significantly greater than for patients receiving placebo (-7.4% vs. -2.3%; p = 0.0001) (intent-to-treat analysis). The overall Eating Disorder Inventory 2 score at week 24 was significantly lower in patients treated with orlistat than in those in the placebo group (p = 0.011). DISCUSSION: Orlistat may be considered as part of the management for patients with obesity and binge eating disorder.
Resumo:
The metabolic syndrome considerably increases the risk of cardiovascular and renal events in hypertension. It has been associated with a wide range of classical and new cardiovascular risk factors as well as with early signs of subclinical cardiovascular and renal damage. Obesity and insulin resistance, beside a constellation of independent factors, which include molecules of hepatic, vascular, and immunologic origin with proinflammatory properties, have been implicated in the pathogenesis. The close relationships among the different components of the syndrome and their associated disturbances make it difficult to understand what the underlying causes and consequences are. At each of these key points, insulin resistance and obesity/proinflammatory molecules, interaction of demographics, lifestyle, genetic factors, and environmental fetal programming results in the final phenotype. High prevalence of end-organ damage and poor prognosis has been demonstrated in a large number of cross-sectional and a few number of prospective studies. The objective of treatment is both to reduce the high risk of a cardiovascular or a renal event and to prevent the much greater chance that metabolic syndrome patients have to develop type 2 diabetes or hypertension. Treatment consists in the opposition to the underlying mechanisms of the metabolic syndrome, adopting lifestyle interventions that effectively reduce visceral obesity with or without the use of drugs that oppose the development of insulin resistance or body weight gain. Treatment of the individual components of the syndrome is also necessary. Concerning blood pressure control, it should be based on lifestyle changes, diet, and physical exercise, which allows for weight reduction and improves muscular blood flow. When antihypertensive drugs are necessary, angiotensin-converting enzyme inhibitors, angiotensin II-AT1 receptor blockers, or even calcium channel blockers are preferable over diuretics and classical beta-blockers in monotherapy, if no compelling indications are present for its use. If a combination of drugs is required, low-dose diuretics can be used. A combination of thiazide diuretics and beta-blockers should be avoided.