21 resultados para Northeast China Transect (NECT)
em Université de Lausanne, Switzerland
Resumo:
We examined the sequence variation of mitochondrial DNA control region and cytochrome b gene of the house mouse (Mus musculus sensu lato) drawn from ca. 200 localities, with 286 new samples drawn primarily from previously unsampled portions of their Eurasian distribution and with the objective of further clarifying evolutionary episodes of this species before and after the onset of human-mediated long-distance dispersals. Phylogenetic analysis of the expanded data detected five equally distinct clades, with geographic ranges of northern Eurasia (musculus, MUS), India and Southeast Asia (castaneus, CAS), Nepal (unspecified, NEP), western Europe (domesticus, DOM) and Yemen (gentilulus). Our results confirm previous suggestions of Southwestern Asia as the likely place of origin of M. musculus and the region of Iran, Afghanistan, Pakistan, and northern India, specifically as the ancestral homeland of CAS. The divergence of the subspecies lineages and of internal sublineage differentiation within CAS were estimated to be 0.37-0.47 and 0.14-0.23 million years ago (mya), respectively, assuming a split of M. musculus and Mus spretus at 1.7 mya. Of the four CAS sublineages detected, only one extends to eastern parts of India, Southeast Asia, Indonesia, Philippines, South China, Northeast China, Primorye, Sakhalin and Japan, implying a dramatic range expansion of CAS out of its homeland during an evolutionary short time, perhaps associated with the spread of agricultural practices. Multiple and non-coincident eastward dispersal events of MUS sublineages to distant geographic areas, such as northern China, Russia and Korea, are inferred, with the possibility of several different routes.
Resumo:
Fission-track and (40)Ar/(39)Ar ages place time constraints on the exhumation of the North Himalayan nappe stack, the Indus Suture Zone and Molasse, and the Transhimalayan Batholith in eastern Ladakh (NW India). Results from this and previous studies on a north-south transect passing near Tso Morari Lake suggest that the SW-directed North Himalayan nappe stack (comprising the Mata, Tetraogal and Tso Morari nappes) was emplaced and metamorphosed by c. 50-45 Ma, and exhumed to moderately shallow depths (c. 10 km) by c. 45-40 Ma. From the mid-Eocene to the present, exhumation continued at a steady and slow rate except for the root zone of the Tso Morari nappe, which cooled faster than the rest of the nappe stack. Rapid cooling occurred at c. 20 Ma and is linked to brittle deformation along the normal Ribil-Zildat Fault concomitant with extrusion of the Crystalline nappe in the south. Data from the Indus Molasse suggest that sediments were still being deposited during the Miocene.
Resumo:
Recent detailed studies on the Batain nappes (northeast coast of Oman), which represent a special part of the so-called `Oman Exotics', have led to a better understanding of the Neotethyan geodynamic evolution. The Batain Exotics bear witness to volcanic activity, sea-level changes, tectonic instability, rifting and oceanization along the Eastern Oman margin during Late Palaeozoic and Mesozoic times. They allow definition of the Batain basin as an aborted Permian branch of Neotethys. This marine basin was created in Early Permian times extending southward to the East African/Madagascar region and was linked to the Karoo rift system. The presented revised classification of the Batain nappes considers the Batain basin to be no longer a part of the Hawasina basin and the Neotethyan mat-gin proper. We attribute the Batain basin to a Mozambique-Sornali-Masirah rift system (Somoma). This system started in Early Permian, times, creating a marine basin between Arabia and India/Madagascar; rifting in the Late Triassic and oceanization during Late Jurassic times led to the separation of East Gondwana.
Resumo:
New zircon U-Pb ages are proposed for late Early and Middle Triassic volcanic ash layers from the Luolou and Baifeng formations (northwestern Guangxi, South China). These ages are based on analyses of single, thermally annealed and chemically abraded zircons. Calibration with ammonoid ages indicate a 250.6 +/- 0.5 Ma age for the early Spathian Tirolites/Columbites beds, a 248.1 +/- 0.4 Ma age for the late Spathian Neopopanoceras haugi Zone, a 246.9 +/- 0.4 Ma age for the early middle Anisian Acrochordiceras hyatti Zone, and a 244.6 +/- 0.5 Ma age for the late middle Anisian Balatonites shoshonensis Zone. The new dates and previously published U-Pb ages indicate a duration of ca. 3 my for the Spathian, and minimal durations of 4.5 +/- 0.6 my for the Early Triassic and of 6.6+0.7/-0.9 my for the Anisian. The new Spathian dates are in a better agreement with a 252.6 +/- 0.2 Ma age than with a 251.4 +/- 0.3 Ma age for the Permian-Triassic boundary. These dates also highlight the extremely uneven duration of the four Early Triassic substages (Griesbachian, Dienerian, Smithian, and Spathian), of which the Spathian exceeds half of the duration of the entire Early Triassic. The simplistic assumption of equal duration of the four Early Triassic subdivisions is no longer tenable for the reconstruction of recovery patterns following the end Permian mass extinction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 26 1, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 26 1, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud (1992) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been.caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.
Resumo:
The detailed geological mapping and structural study of a complete transect across the northwestern Himalaya allow to describe the tectonic evolution of the north Indian continental margin during the Tethys ocean opening and the Himalayan Orogeny. The Late Paleozoic Tethys rifting is associated with several tectonomagmatic events. In Upper Lahul and SE Zanskar, this extensional phase is recorded by Lower Carboniferous synsedimentary transtensional faults, a Lower Permian stratigraphic unconformity, a Lower Permian granitic intrusion and middle Permian basaltic extrusions (Panjal Traps). In eastern Ladakh, a Permian listric normal fault is also related to this phase. The scarcity of synsedimentary faults and the gradual increase of the Permian syn-rift sediment thickness towards the NE suggest a flexural type margin. The collision of India and Asia is characterized by a succession of contrasting orogenic phases. South of the Suture Zone, the initiation of the SW vergent Nyimaling-Tsarap Nappe corresponds to an early phase of continental underthrusting. To the S, in Lahul, an opposite underthrusting within the Indian plate is recorded by the NE vergent Tandi Syncline. This structure is associated with the newly defined Shikar Beh Nappe, now partly eroded, which is responsible for the high grade (amphibolite facies) regional metamorphism of South Lahul. The main thrusting of the Nyimaling-Tsarap Nappe followed the formation of the Shikar Beh Nappe. The Nyimaling-Tsarap Nappe developed by ductile shear of the upper part of the subducted Indian continental margin and is responsible for the progressive regional metamorphism of SE Zanskar, reaching amphibolite facies below the frontal part of the nappe, near Sarchu. In Upper Lahul, the frontal parts of the Nyimaling-Tsarap and Shikar Beh nappes are separated by a zone of low grade metamorphic rocks (pumpellyite-actinolite facies to lower greenschist facies). At high structural level, the Nyimaling-Tsarap Nappe is characterized by imbricate structures, which grade into a large ductile shear zone with depth. The related crustal shortening is about 87 km. The root zone and the frontal part of this nappe have been subsequently affected by two zones of dextral transpression and underthrusting: the Nyimaling Shear Zone and the Sarchu Shear Zone. These shear zones are interpreted as consequences of the counterclockwise rotation of the continental underthrusting direction of India relative to Asia, which occurred some 45 and 36 Ma ago, according to plate tectonic models. Later, a phase of NE vergent `'backfolding'' developed on these two zones of dextral transpression, creating isoclinal folds in SE Zanskar and more open folds in the Nyimaling Dome and in the Indus Molasse sediments. During a late stage of the Himalayan Orogeny, the frontal part of the Nyimaling-Tsarap Nappe underwent an extension of about 15 km. This phase is represented by two types of structures, responsible for the tectonic unroofing of the amphibolite facies rocks of the Sarchu area: the Sarchu high angle Normal Fault, cutting a first set of low angle normal faults, which have been created by reactivation of older thrust planes related to the Nyimaling-Tsarap Nappe.
Resumo:
We examined Hg biogeochemistry in Baihua Reservoir, a system affected by industrial wastewater containing mercury (Hg). As expected, we found high levels of total Hg (THg, 664-7421 ng g(-1)) and monomethylmercury (MMHg, 3-21 ng g(-1)) in the surface sediments (0-10 cm). In the water column, both THg and MMHg showed strong vertical variations with higher concentrations in the anoxic layer (>4m) than in the oxic layer (0-4 m), which was most pronounced for the dissolved MMHg (p < 0.001). However, mercury levels in biota samples (mostly cyprinid fish) were one order of magnitude lower than common regulatory values (i.e. 0.3-0.5 mg kg(-1)) for human consumption. We identified three main reasons to explain the low fish Hg bioaccumulation: disconnection of the aquatic food web from the high MMHg zone, simple food web structures, and biodilution effect at the base of the food chain in this eutrophic reservoir.
Resumo:
The Crystalline Nappe of the High Himalayan Crystalline has been examined along the Kulu Valley and its vicinity (Mandi-Khoksar transect). This nappe was believed to have undergone deformation related only to its transport towards the SW essentially during the `'Main Central Thrust event''. New data has led to the conclusion that during the Himalayan orogeny, two distinctive phases, related to two opposite transport directions, characterize the evolution of this part of the chain, before the creation of the late NE-vergent backfolding. The first phase corresponds to an early NE-vergent folding and thrusting, creating the Tandi Syncline and the NE-oriented Shikar Beh Nappe stack, with a displacement amplitude of about 50 km. Two schistosities, together with a strong stretching lineation are developed at a deep tectonic level under amphibolite facies conditions (kyanite-staurolite-garnet-two mica schists). At a higher tectonic level and in the southern part of the section (Tandy Syncline and southern Kulu Valley between Kulu and Mandi) one or two schistosities are developed in the greenschist facies grade rocks (garnet-biotite and biotite schists). These structures and the associated Barrovian type metamorphism are all related to the NE-verging Shikar Beh Nappe. The creation of the NE-verging Shikar Beh Nappe may be explained by the reactivation of a SW dipping listric normal fault of the N Indian flexural passive margin, during the early stages of the Himalayan orogeny. In the second phase, the still hot metamorphic rocks of the Shikar Beh Nappe were folded and thrust towards the SW (mainly along the MBT and the MCT with a displacement in excess of 100 km) onto the cold, low-grade metamorphic rocks of the Larji-Kulu-Rampur Window or, near Mandi, on the non-metamorphic sandstones of the Ganges Molasse (Siwaliks). Sense of shear criteria and a strong NE-SW stretching-lineation indicate that the Crystalline Nappe has been overthrusted towards the SW. Thermometry on synkinematically crystallised garnet-biotite and garnet-hornblende pairs reveals the lower amphibolite facies temperature conditions related to the Crystalline Nappe formation. From the muscovite and biotite Rb-Sr cooling ages, the Shikar Beh Nappe emplacement occurred before 32 Ma and the southwestward thrusting of the Crystalline Nappe began before 21 Ma. Our model involving two opposite directions of thrusting goes against the conventional idea of only one main SW-oriented transport direction in the High Himalayan Crystalline Nappes.