9 resultados para Nonlinear optical properties
em Université de Lausanne, Switzerland
Resumo:
Nonlinear optical nanocrystals have been recently introduced as a promising alternative to fluorescent probes for multiphoton microscopy. We present for the first time a complete survey of the properties of five nanomaterials (KNbO(3), LiNbO(3), BaTiO(3), KTP, and ZnO), describing their preparation and stabilization and providing quantitative estimations of their nonlinear optical response. In the light of their prospective use as biological and clinical markers, we assess their biocompatibility on human healthy and cancerous cell lines. Finally, we demonstrate the great potential for cell imaging of these inherently nonlinear probes in terms of optical contrast, wavelength flexibility, and signal photostability.
Resumo:
In the investigation of thin films of transition metal nitrides, an essential role is played by the accurate determination of their chemical composition. Actually the chemical composition depends on the deposition parameters and influences the optical properties. These relations are illustrated in thin films of TiNx and (Ti1-yVy)N-x deposited by reactive magnetron sputtering from composite targets of the elements. By variation of the nitrogen partial pressure and the target composition, different samples have been obtained. The chemical composition has been measured by electron probe microanalysis at low irradiation voltages. The optical properties are evaluated by ex-situ ellipsometry. Using the screened Drude model, they are correlated with the differences in composition. Adding vanadium or nitrogen in Ti-N is shown to have the same effect on the optical properties.
Resumo:
We present the optical properties of Na0.7CoO2 single crystals, measured over a broad spectral range as a function of temperature (T). The capability to cover the energy range from the far-infrared up to the ultraviolet allows us to perform reliable Kramers-Kronig transformation, in order to obtain the absorption spectrum (i.e., the complex optical conductivity). To the complex optical conductivity we apply the generalized Drude model, extracting the frequency dependence of the scattering rate (Gamma) and effective mass (m*) of the itinerant charge carriers. We find that Gamma(omega) at low temperatures and for similar to omega. This suggests that Na0.7CoO2 is at the verge of a spin-density-wave metallic phase.
Resumo:
The aim of this paper is to evaluate the risks associated with the use of fake fingerprints on a livescan supplied with a method of liveness detection. The method is based on optical properties of the skin. The sensor uses several polarizations and illuminations to capture the information of the different layers of the human skin. These experiments also allow for the determination under which conditions the system is deceived and if there is an influence respectively of the nature of the fake, the mould used for the production or the individuals involved in the attack. These experiments showed that current multispectral sensors can be deceived by the use of fake fingerprints created with or without the cooperation of the subject. Fakes created from direct casts perform better than those produced by fakes created from indirect casts. The results showed that the success of the attack is influenced by two main factors. The first is the quality of the fakes, and by extension the quality of the original fingerprint. The second is the combination of the general patterns involved in the attacks since an appropriate combination can strongly increase the rates of successful attacks.
Resumo:
We introduce a microscopic method that determines quantitative optical properties beyond the optical diffraction limit and allows direct imaging of unstained living biological specimens. In established holographic microscopy, complex fields are measured using interferometric detection, allowing diffraction-limited phase measurements. Here, we show that non-invasive optical nanoscopy can achieve a lateral resolution of 90 nm by using a quasi-2 pi-holographic detection scheme and complex deconvolution. We record holograms from different illumination directions on the sample plane and observe subwavelength tomographic variations of the specimen. Nanoscale apertures serve to calibrate the tomographic reconstruction and to characterize the imaging system by means of the coherent transfer function. This gives rise to realistic inverse filtering and guarantees true complex field reconstruction. The observations are shown for nanoscopic porous cell frustule (diatoms), for the direct study of bacteria (Escherichia coil), and for a time-lapse approach to explore the dynamics of living dendritic spines (neurones).
Resumo:
A new high-precision ultrasonic device was developed to determine noninvasively arterial compliance as a function of blood pressure. Because of the nonlinear elastic properties of arterial walls, measurements of compliance can be appropriately compared only if obtained over a range of pressures. This apparatus was used to evaluate in a double-blind, parallel fashion the effect of three different antihypertensive drugs and of a placebo on radial artery compliance. Thirty-two normotensive volunteers were randomly allocated to an 8-day, once-a-day oral treatment with either a placebo, 100 mg atenolol, 20 mg nitrendipine, or 20 mg lisinopril. Blood pressure, heart rate, radial artery diameter, and arterial compliance were measured immediately before as well as 6 hours after dosing on the first and last days of the study. On the eighth day of administration, within 6 hours after dosing, lisinopril induced an acute increase in radial artery diameter, from 2.99 +/- 0.06 to 3.28 +/- 0.09 mm (mean +/- SEM, p less than 0.01). The compliance-pressure curve was shifted upward on day 1 (p less than 0.01) as well as on day 8 (p less than 0.05). None of the other drugs induced any significant modification of these parameters. Arterial compliance has a strong nonlinear dependency on intra-arterial pressure and therefore has to be defined as a function of pressure. Antihypertensive drugs acting by different mechanisms may have different effects on the mechanical properties of large arteries.
Resumo:
The aim of this paper is to evaluate the risks associated with the use of fake fingerprints on a livescan supplied with a method of liveness detection. The method is based on optical properties of the skin. The sensor uses several polarizations and illuminations to capture the information of the different layers of the human skin. These experiments also allow for the determination under which conditions the system is deceived and if there is an influence respectively of the nature of the fake, the mould used for the production or the individuals involved in the attack. These experiments showed that current multispectral sensors can be deceived by the use of fake fingerprints created with or without the cooperation of the subject. Fakes created from direct casts perform better than those produced by fakes created from indirect casts. The results showed that the success of the attack is influenced by two main factors. The first is the quality of the fakes, and by extension the quality of the original fingerprint. The second is the combination of the general patterns involved in the attacks since an appropriate combination can strongly increase the rates of successful attacks.
Resumo:
Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data.
Resumo:
The use of quantum dots (QDs) in the area of fingermark detection is currently receiving a lot of attention in the forensic literature. Most of the research efforts have been devoted to cadmium telluride (CdTe) quantum dots often applied as powders to the surfaces of interests. Both the use of cadmium and the nano size of these particles raise important issues in terms of health and safety. This paper proposes to replace CdTe QDs by zinc sulphide QDs doped with copper (ZnS:Cu) to address these issues. Zinc sulphide-copper doped QDs were successfully synthesized, characterized in terms of size and optical properties and optimized to be applied for the detection of impressions left in blood, where CdTe QDs proved to be efficient. Effectiveness of detection was assessed in comparison with CdTe QDs and Acid Yellow 7 (AY7, an effective blood reagent), using two series of depletive blood fingermarks from four donors prepared on four non-porous substrates, i.e. glass, transparent polypropylene, black polyethylene and aluminium foil. The marks were cut in half and processed separately with both reagents, leading to two comparison series (ZnS:Cu vs. CdTe, and ZnS:Cu vs. AY7). ZnS:Cu proved to be better than AY7 and at least as efficient as CdTe on most substrates. Consequently, copper-doped ZnS QDs constitute a valid substitute for cadmium-based QDs to detect blood marks on non-porous substrates and offer a safer alternative for routine use.