5 resultados para Nonlinear integral equations.

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Little information is available on the validity of simple and indirect body-composition methods in non-Western populations. Equations for predicting body composition are population-specific, and body composition differs between blacks and whites. OBJECTIVE: We tested the hypothesis that the validity of equations for predicting total body water (TBW) from bioelectrical impedance analysis measurements is likely to depend on the racial background of the group from which the equations were derived. DESIGN: The hypothesis was tested by comparing, in 36 African women, TBW values measured by deuterium dilution with those predicted by 23 equations developed in white, African American, or African subjects. These cross-validations in our African sample were also compared, whenever possible, with results from other studies in black subjects. RESULTS: Errors in predicting TBW showed acceptable values (1.3-1.9 kg) in all cases, whereas a large range of bias (0.2-6.1 kg) was observed independently of the ethnic origin of the sample from which the equations were derived. Three equations (2 from whites and 1 from blacks) showed nonsignificant bias and could be used in Africans. In all other cases, we observed either an overestimation or underestimation of TBW with variable bias values, regardless of racial background, yielding no clear trend for validity as a function of ethnic origin. CONCLUSIONS: The findings of this cross-validation study emphasize the need for further fundamental research to explore the causes of the poor validity of TBW prediction equations across populations rather than the need to develop new prediction equations for use in Africa.