6 resultados para Neurostimulation
em Université de Lausanne, Switzerland
Resumo:
Unipolar depression is among the leading cause of invalidity and disability-adjusted life-years. Many depressed patients do not respond to several antidepressant treatments. Several treatments have been investigated in resistant depression using electrical or magnetic stimulation of the brain. In this field, electroconvulsivotherapy remains to date the only treatment validated for efficacy and security. Novel neuromodulatory treatments used in neurological conditions are currently under investigation. Vagus nerve stimulation and deep brain stimulation may offer long-term efficacy and therefore justify expensive and highly specialized treatment programs.
Resumo:
INTRODUCTION: The Neuromodulation Appropriateness Consensus Committee (NACC) of the International Neuromodulation Society (INS) evaluated evidence regarding the safety and efficacy of neurostimulation to treat chronic pain, chronic critical limb ischemia, and refractory angina and recommended appropriate clinical applications. METHODS: The NACC used literature reviews, expert opinion, clinical experience, and individual research. Authors consulted the Practice Parameters for the Use of Spinal Cord Stimulation in the Treatment of Neuropathic Pain (2006), systematic reviews (1984 to 2013), and prospective and randomized controlled trials (2005 to 2013) identified through PubMed, EMBASE, and Google Scholar. RESULTS: Neurostimulation is relatively safe because of its minimally invasive and reversible characteristics. Comparison with medical management is difficult, as patients considered for neurostimulation have failed conservative management. Unlike alternative therapies, neurostimulation is not associated with medication-related side effects and has enduring effect. Device-related complications are not uncommon; however, the incidence is becoming less frequent as technology progresses and surgical skills improve. Randomized controlled studies support the efficacy of spinal cord stimulation in treating failed back surgery syndrome and complex regional pain syndrome. Similar studies of neurostimulation for peripheral neuropathic pain, postamputation pain, postherpetic neuralgia, and other causes of nerve injury are needed. International guidelines recommend spinal cord stimulation to treat refractory angina; other indications, such as congestive heart failure, are being investigated. CONCLUSIONS: Appropriate neurostimulation is safe and effective in some chronic pain conditions. Technological refinements and clinical evidence will continue to expand its use. The NACC seeks to facilitate the efficacy and safety of neurostimulation.
Resumo:
INTRODUCTION: The International Neuromodulation Society (INS) has determined that there is a need for guidance regarding safety and risk reduction for implantable neurostimulation devices. The INS convened an international committee of experts in the field to explore the evidence and clinical experience regarding safety, risks, and steps to risk reduction to improve outcomes. METHODS: The Neuromodulation Appropriateness Consensus Committee (NACC) reviewed the world literature in English by searching MEDLINE, PubMed, and Google Scholar to evaluate the evidence for ways to reduce risks of neurostimulation therapies. This evidence, obtained from the relevant literature, and clinical experience obtained from the convened consensus panel were used to make final recommendations on improving safety and reducing risks. RESULTS: The NACC determined that the ability to reduce risk associated with the use of neurostimulation devices is a valuable goal and possible with best practice. The NACC has recommended several practice modifications that will lead to improved care. The NACC also sets out the minimum training standards necessary to become an implanting physician. CONCLUSIONS: The NACC has identified the possibility of improving patient care and safety through practice modification. We recommend that all implanting physicians review this guidance and consider adapting their practice accordingly.
Resumo:
Seeing seems effortless, despite the need to segregate and integrate visual information that varies in quality, quantity, and location. The extent to which seeing passively recapitulates the external world is challenged by phenomena such as illusory contours, an example of visual completion whereby borders are perceived despite their physical absence in the image. Instead, visual completion and seeing are increasingly conceived as active processes, dependent on information exchange across neural populations. How this is instantiated in the brain remains controversial. Divergent models emanate from single-unit and population-level electrophysiology, neuroimaging, and neurostimulation studies. We reconcile discrepant findings from different methods and disciplines, and underscore the importance of taking into account spatiotemporal brain dynamics in generating models of brain function and perception.
Resumo:
Our inability to adequately treat many patients with refractory epilepsy caused by focal cortical dysplasia (FCD), surgical inaccessibility and failures are significant clinical drawbacks. The targeting of physiologic features of epileptogenesis in FCD and colocalizing functionality has enhanced completeness of surgical resection, the main determinant of outcome. Electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) and magnetoencephalography are helpful in guiding electrode implantation and surgical treatment, and high-frequency oscillations help defining the extent of the epileptogenic dysplasia. Ultra high-field MRI has a role in understanding the laminar organization of the cortex, and fluorodeoxyglucose-positron emission tomography (FDG-PET) is highly sensitive for detecting FCD in MRI-negative cases. Multimodal imaging is clinically valuable, either by improving the rate of postoperative seizure freedom or by reducing postoperative deficits. However, there is no level 1 evidence that it improves outcomes. Proof for a specific effect of antiepileptic drugs (AEDs) in FCD is lacking. Pathogenic mutations recently described in mammalian target of rapamycin (mTOR) genes in FCD have yielded important insights into novel treatment options with mTOR inhibitors, which might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease. The ketogenic diet (KD) has been demonstrated to be particularly effective in children with epilepsy caused by structural abnormalities, especially FCD. It attenuates epigenetic chromatin modifications, a master regulator for gene expression and functional adaptation of the cell, thereby modifying disease progression. This could imply lasting benefit of dietary manipulation. Neurostimulation techniques have produced variable clinical outcomes in FCD. In widespread dysplasias, vagus nerve stimulation (VNS) has achieved responder rates >50%; however, the efficacy of noninvasive cranial nerve stimulation modalities such as transcutaneous VNS (tVNS) and noninvasive (nVNS) requires further study. Although review of current strategies underscores the serious shortcomings of treatment-resistant cases, initial evidence from novel approaches suggests that future success is possible.