17 resultados para Neuroartropatia de Charcot

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charcot-Marie-Tooth disease type 2A is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene. Mitofusin 2 encodes a mitochondrial outer membrane protein that participates in mitochondrial fusion in mammalian cells. How mutations in this protein lead to Charcot-Marie-Tooth disease type 2A pathophysiology remains unclear. We have generated a transgenic mouse expressing either a mutated (R94Q) or wild-type form of human mitofusin 2 in neurons to evaluate whether the R94Q mutation was sufficient for inducing a Charcot-Marie-Tooth disease type 2A phenotype. Only mice expressing mitofusin 2(R94Q) developed locomotor impairments and gait defects thus mimicking the Charcot-Marie-Tooth disease type 2A neuropathy. In these animals, the number of mitochondria per axon was significantly increased in the distal part of the sciatic nerve axons with a diameter smaller than 3.5 microm. Importantly, the analysis of R94Q transgenic animals also revealed an age-related shift in the size of myelinated axons leading to an over-representation of axons smaller than 3.5 microm. Together these data suggest a link between an increased number of mitochondria in axons and a shift in axonal size distribution in mitofusin 2(R94Q) transgenic animals that may contribute to their neurological phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with Charcot-Marie-Tooth neuropathy and gene targeting in mice revealed an essential role for the SH3TC2 gene in peripheral nerve myelination. SH3TC2 expression is restricted to Schwann cells in the peripheral nervous system, and the gene product, SH3TC2, localizes to the perinuclear recycling compartment. Here, we show that SH3TC2 interacts with the small guanosine triphosphatase Rab11, which is known to regulate the recycling of internalized membranes and receptors back to the cell surface. Results of protein binding studies and transferrin receptor trafficking are in line with a role of SH3TC2 as a Rab11 effector molecule. Consistent with a function of Rab11 in Schwann cell myelination, SH3TC2 mutations that cause neuropathy disrupt the SH3TC2/Rab11 interaction, and forced expression of dominant negative Rab11 strongly impairs myelin formation in vitro. Our data indicate that the SH3TC2/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain typical gait characteristics such as foot-drop and foot supination are well described in Charcot-Marie-Tooth disease. These are directly related to the primary disease and due to the weakness of ankle dorsiflexors and everters characteristic of this hereditary neuropathy. We analysed 16 subjects aged 8-52 years old (11 with type I, 5 with type II Charcot-Marie-Tooth disease) using three-dimensional gait analysis and identified kinematic features previously unreported. These patients showed a combination of tight tendo achillei, foot-drop, failure of plantar flexion and increased foot supination, but also presented with excessive internal rotation of the knee and/or tibia, knee hyperextension in stance, excessive external rotation at the hips and decreased hip adduction in stance (typical of a broad based gait). These proximal features could have been an adaptation to or consequence of the disrupted ankle and foot biomechanics, however a direct relation to the neuropathy is also possible since sub-normal muscle power was observed at the proximal levels in most subjects on both manual testing and kinetic analysis. Gait analysis is a useful tool in defining the characteristic gait of patients with Charcot-Marie-Tooth disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charcot neuropathic osteoarthropathy (CNO) is a destructive process affecting the bone and joint structure of diabetic patients and resulting from peripheral neuropathy. It is a limb threatening condition resulting in dramatic deformities associated with severe morbi-mortality. The diagnosis is mostly made by the observation of inflammatory signs and higlight the importance of prompt foot evaluation. Imaging studies may help confirm the diagnosis and the severity of the condition but lack of specificity. The goal of the treatment is to maintain or achieve structural stability of the foot and ankle to prevent further deformity and plantar dislocation. The scientific evidences aren't strong enough to recommend bisphosphonates or acute surgical treatment. Surgery is unanimusly recommended to prevent secondary ulceration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charcot-Marie-Tooth neuropathy (CMT) represents a heterogenous group of inherited disorders of the peripheral nervous system. One form of autosomal recessive demyelinating CMT (CMT4C, 5q32) is caused by mutations in the gene encoding KIAA1985, a protein of so far unknown function. Here we show that KIAA1985 is exclusively expressed in Schwann cells. KIAA1985 is tethered to cellular membranes through an N-terminal myristic acid anchor and localizes to the perinuclear recycling compartment. A search for proteins that interact with KIAA1985 identified the small GTPase Rab11, a key regulator of recycling endosome functions. CMT4C-related missense mutations disrupt the KIAA1985/Rab11 interaction. Protein binding studies indicate that KIAA1985 functions as a Rab11 effector, as it interacts only with active forms of Rab11 (WT and Q70L) and does not interact with the GDP locked mutant (S25N). Consistent with a function of Rab11 in Schwann cell myelination, myelin formation was strongly impaired when dorsal root ganglion neurons were co-cultured with Schwann cells infected with Rab11 S25N. Our data indicate that the KIAA1985/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Jean Cruveilhier has always been described as a pioneer in pathological anatomy. Almost nothing has been reported concerning his exceptional methodology allying pre-mortem clinical description and syndromic classification of neurological and neurosurgical diseases, and post-mortem meticulous dissections. Cruveilhier's methodology announced the birth of the anatomoclinical method built up by Jean-Martin Charcot and the neurological French school during the 19th century. The aim of our work is to extract the quintessence of Cruveilhier's contributions to skull base pathology through his cogent clinical descriptions coupled with exceptional lithographs of anterior skull base, suprasellar and cerebello-pontine angle tumors. METHODS: We reviewed the masterwork of Jean Cruveilhier on pathological anatomy and we selected the chapters dedicated to central nervous system pathologies, mainly skull base diseases. A systematic review was performed on Pubmed/Medline and Google Scholar using the keywords "Jean Cruveilhier", "Skull base pathology", "Anatomoclinical method". RESULTS: Among his descriptions, Cruveilhier dedicated large chapters to neurosurgical diseases including brain tumors, cerebrovascular pathologies, malformations of the central nervous system, hydrocephalus, brain infections and spinal cord compressions. CONCLUSION: This work emphasizes on the role of Jean Cruveilhier in the birth of the anatomoclinical method particularly in neuroscience during a 19th century rich of epistemological evolutions toward an evidence-based medicine, through the prism of Cruveilhier's contribution to skull base pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Committee of the European Concerted Action for Multiple Sclerosis (Charcot Foundation) organised five workshops to discuss CSF analytical standards in the diagnosis of multiple sclerosis. This consensus report from 12 European countries summarises the results of those workshops. It is hoped that neurologists will confer with their colleagues in clinical chemistry to arrange the best possible local practice. The most sensitive method for the detection of oligoclonal immunoglobulin bands is isoelectric focusing. The same amounts of IgG in parallel CSF and serum samples are used and oligoclonal bands are revealed with IgG specific antibody staining. All laboratories performing isoelectric focusing should check their technique at least annually using "blind" standards for the five different CSF and serum patterns. Quantitative measurements of IgG production in the CNS are less sensitive than isoelectric focusing. The preferred method for detection of blood-CSF barrier dysfunction is the albumin quotient. The CSF albumin or total protein concentrations are less satisfactory. These results must be interpreted with reference to the age of the patient and the local method of determination. Cells should be counted. The normal value is no more than 4 cells/microliters. Among evolving optional tests, measurement of the combined local synthesis of antibodies against measles, rubella, and/or varicella zoster could represent a significant advance if it offers higher specificity (not sensitivity) for identifying chronic rather than acute inflammation. Other tests that may have useful correlations with clinical indices include those for oligoclonal free light chains, IgM, IgA, or myelin basic protein concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charcot-Marie-Tooth disease type 4C (CMT4C) is an early-onset, autosomal recessive form of demyelinating neuropathy. The clinical manifestations include progressive scoliosis, delayed age of walking, muscular atrophy, distal weakness, and reduced nerve conduction velocity. The gene mutated in CMT4C disease, SH3TC2/KIAA1985, was recently identified; however, the function of the protein it encodes remains unknown. We have generated knockout mice where the first exon of the Sh3tc2 gene is replaced with an enhanced GFP cassette. The Sh3tc2(DeltaEx1/DeltaEx1) knockout animals develop progressive peripheral neuropathy manifested by decreased motor and sensory nerve conduction velocity and hypomyelination. We show that Sh3tc2 is specifically expressed in Schwann cells and localizes to the plasma membrane and to the perinuclear endocytic recycling compartment, concordant with its possible function in myelination and/or in regions of axoglial interactions. Concomitantly, transcriptional profiling performed on the endoneurial compartment of peripheral nerves isolated from control and Sh3tc2(DeltaEx1/DeltaEx1) animals uncovered changes in transcripts encoding genes involved in myelination and cell adhesion. Finally, detailed analyses of the structures composed of compact and noncompact myelin in the peripheral nerve of Sh3tc2(DeltaEx1/DeltaEx1) animals revealed abnormal organization of the node of Ranvier, a phenotype that we confirmed in CMT4C patient nerve biopsies. The generated Sh3tc2 knockout mice thus present a reliable model of CMT4C neuropathy that was instrumental in establishing a role for Sh3tc2 in myelination and in the integrity of the node of Ranvier, a morphological phenotype that can be used as an additional CMT4C diagnostic marker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in SH3TC2 trigger autosomal recessive demyelinating Charcot-Marie-Tooth type 4C (CMT4C) neuropathy. Sh3tc2 is specifically expressed in Schwann cells and is necessary for proper myelination of peripheral axons. In line with the early onset of neuropathy observed in patients with CMT4C, our analyses of the murine model of CMT4C revealed that the myelinating properties of Sh3tc2-deficient Schwann cells are affected at an early stage. This early phenotype is associated with changes in the canonical Nrg1/ErbB pathway involved in control of myelination. We demonstrated that Sh3tc2 interacts with ErbB2 and plays a role in the regulation of ErbB2 intracellular trafficking from the plasma membrane upon Nrg1 activation. Interestingly, both the loss of Sh3tc2 function in mice and the pathological mutations present in CMT4C patients affect ErbB2 internalization, potentially altering its downstream intracellular signaling pathways. Altogether, our results indicate that the molecular mechanism for the axonal size sensing is disturbed in Sh3tc2-deficient myelinating Schwann cells, thus providing a novel insight into the pathophysiology of CMT4C neuropathy.