4 resultados para Neuro-signalling
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND AND PURPOSE: Accurate placement of an external ventricular drain (EVD) for the treatment of hydrocephalus is of paramount importance for its functionality and in order to minimize morbidity and complications. The aim of this study was to compare two different drain insertion assistance tools with the traditional free-hand anatomical landmark method, and to measure efficacy, safety and precision. METHODS: Ten cadaver heads were prepared by opening large bone windows centered on Kocher's points on both sides. Nineteen physicians, divided in two groups (trainees and board certified neurosurgeons) performed EVD insertions. The target for the ventricular drain tip was the ipsilateral foramen of Monro. Each participant inserted the external ventricular catheter in three different ways: 1) free-hand by anatomical landmarks, 2) neuronavigation-assisted (NN), and 3) XperCT-guided (XCT). The number of ventricular hits and dangerous trajectories; time to proceed; radiation exposure of patients and physicians; distance of the catheter tip to target and size of deviations projected in the orthogonal plans were measured and compared. RESULTS: Insertion using XCT increased the probability of ventricular puncture from 69.2 to 90.2 % (p = 0.02). Non-assisted placements were significantly less precise (catheter tip to target distance 14.3 ± 7.4 mm versus 9.6 ± 7.2 mm, p = 0.0003). The insertion time to proceed increased from 3.04 ± 2.06 min. to 7.3 ± 3.6 min. (p < 0.001). The X-ray exposure for XCT was 32.23 mSv, but could be reduced to 13.9 mSv if patients were initially imaged in the hybrid-operating suite. No supplementary radiation exposure is needed for NN if patients are imaged according to a navigation protocol initially. CONCLUSION: This ex vivo study demonstrates a significantly improved accuracy and safety using either NN or XCT-assisted methods. Therefore, efforts should be undertaken to implement these new technologies into daily clinical practice. However, the accuracy versus urgency of an EVD placement has to be balanced, as the image-guided insertion technique will implicate a longer preparation time due to a specific image acquisition and trajectory planning.
Resumo:
The Notch1 gene has an important role in mammalian cell-fate decision and tumorigenesis. Upstream control mechanisms for transcription of this gene are still poorly understood. In a chemical genetics screen for small molecule activators of Notch signalling, we identified epidermal growth factor receptor (EGFR) as a key negative regulator of Notch1 gene expression in primary human keratinocytes, intact epidermis and skin squamous cell carcinomas (SCCs). The underlying mechanism for negative control of the Notch1 gene in human cells, as well as in a mouse model of EGFR-dependent skin carcinogenesis, involves transcriptional suppression of p53 by the EGFR effector c-Jun. Suppression of Notch signalling in cancer cells counteracts the differentiation-inducing effects of EGFR inhibitors while, at the same time, synergizing with these compounds in induction of apoptosis. Thus, our data reveal a key role of EGFR signalling in the negative regulation of Notch1 gene transcription, of potential relevance for combinatory approaches for cancer therapy.
Resumo:
The genetics and pathogenesis of splenic marginal zone lymphoma are poorly understood. The lymphoma lacks chromosome translocation, and ~30% of cases are featured by 7q deletion, but the gene targeted by the deletion is unknown. A recent study showed inactivation of A20, a 'global' NF-kB negative regulator, in 1 of 12 splenic marginal zone lymphoma. To investigate further whether deregulation of the NF-kB pathway plays a role in the pathogenesis of splenic marginal zone lymphoma, we screened several NF-kB regulators for genetic changes by PCR and sequencing. Somatic mutations were found in A20 (6/46=13%), MYD88 (6/46=13%), CARD11 (3/34=8.8%), but not in CD79A, CD79B and ABIN1. Interestingly, these genetic changes are largely mutually exclusive from each other and MYD88 mutation was also mutually exclusive from 7q deletion. These results strongly suggest that deregulation of the TLR (toll like receptor) and BCR (B-cell receptor) signalling pathway may play an important role in the pathogenesis of splenic marginal zone lymphoma.
Resumo:
The TNF family ligand ectodysplasin A (EDA) regulates the induction, morphogenesis and/or maintenance of skin-derived structures such as teeth, hair, sweat glands and several other glands. Deficiencies in the EDA - EDA receptor (EDAR) signalling pathway cause hypohidrotic ectodermal dysplasia (HED). This syndrome is characterized by the absence or malformation of several skin-derived appendages resulting in hypotrychosis, hypodontia, heat-intolerance, dry skin and dry eyes, susceptibility to airways infections and crusting of various secretions. The EDA-EDAR system is an important effector of canonical Wnt signalling in developing skin appendages. It functions by stimulating NF-κB-mediated transcription of effectors or inhibitors of the Wnt, Sonic hedgehog (SHH), fibroblast growth factor (FGF) and transforming growth factor beta (TGFβ) pathways that regulate interactions within or between epithelial and mesenchymal cells and tissues. In animal models of Eda-deficiency, soluble EDAR agonists can precisely correct clinically relevant symptoms with low side effects even at high agonist doses, indicating that efficient negative feedback signals occur in treated tissues. Hijacking of the placental antibody transport system can help deliver active molecules to developing foetuses in a timely manner. EDAR agonists may serve to treat certain forms of ectodermal dysplasia.