207 resultados para Network Selection

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HER-2/ErbB-2 oncoprotein is overexpressed in human breast and ovarian adenocarcinomas and is clearly associated with the malignant phenotype. Although no specific ligand for this receptor has been positively identified, ErbB-2 was shown to play a central role in a network of interactions with the related ErbB-1, ErbB-3 and ErbB-4 receptors. We have selected new peptides binding to ErbB-2 extracellular domain protein (ECD) by screening 2 newly developed constrained and unconstrained random hexapeptide phage libraries. Out of 37 phage clones, which bound specifically to ErbB-2 ECD, we found 6 constrained and 10 linear different hexapeptide sequences. Among the latter, 5 consensus motifs, all with a common methionine and a positively charged residue at positions 1 and 3, respectively, were identified. Furthermore, 3 representative hexapeptides were fused to a coiled-coil pentameric recombinant protein to form the so-called peptabodies recently developed in our laboratory. The 3 peptabodies bound specifically to the ErbB-2 ECD, as determined by enzyme-linked immunosorbent assay and BIAcore analysis and to tumor cells overexpressing ErbB-2, as shown by flow cytometry. Interestingly, one of the free selected linear peptides and all 3 peptabodies inhibited the proliferation of tumor cells overexpressing ErbB-2. In conclusion, a novel type of ErbB-2-specific ligand is described that might complement presently available monoclonal antibodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The main objective of this work is to show how the choice of the temporal dimension and of the spatial structure of the population influences an artificial evolutionary process. In the field of Artificial Evolution we can observe a common trend in synchronously evolv¬ing panmictic populations, i.e., populations in which any individual can be recombined with any other individual. Already in the '90s, the works of Spiessens and Manderick, Sarma and De Jong, and Gorges-Schleuter have pointed out that, if a population is struc¬tured according to a mono- or bi-dimensional regular lattice, the evolutionary process shows a different dynamic with respect to the panmictic case. In particular, Sarma and De Jong have studied the selection pressure (i.e., the diffusion of a best individual when the only selection operator is active) induced by a regular bi-dimensional structure of the population, proposing a logistic modeling of the selection pressure curves. This model supposes that the diffusion of a best individual in a population follows an exponential law. We show that such a model is inadequate to describe the process, since the growth speed must be quadratic or sub-quadratic in the case of a bi-dimensional regular lattice. New linear and sub-quadratic models are proposed for modeling the selection pressure curves in, respectively, mono- and bi-dimensional regu¬lar structures. These models are extended to describe the process when asynchronous evolutions are employed. Different dynamics of the populations imply different search strategies of the resulting algorithm, when the evolutionary process is used to solve optimisation problems. A benchmark of both discrete and continuous test problems is used to study the search characteristics of the different topologies and updates of the populations. In the last decade, the pioneering studies of Watts and Strogatz have shown that most real networks, both in the biological and sociological worlds as well as in man-made structures, have mathematical properties that set them apart from regular and random structures. In particular, they introduced the concepts of small-world graphs, and they showed that this new family of structures has interesting computing capabilities. Populations structured according to these new topologies are proposed, and their evolutionary dynamics are studied and modeled. We also propose asynchronous evolutions for these structures, and the resulting evolutionary behaviors are investigated. Many man-made networks have grown, and are still growing incrementally, and explanations have been proposed for their actual shape, such as Albert and Barabasi's preferential attachment growth rule. However, many actual networks seem to have undergone some kind of Darwinian variation and selection. Thus, how these networks might have come to be selected is an interesting yet unanswered question. In the last part of this work, we show how a simple evolutionary algorithm can enable the emrgence o these kinds of structures for two prototypical problems of the automata networks world, the majority classification and the synchronisation problems. Synopsis L'objectif principal de ce travail est de montrer l'influence du choix de la dimension temporelle et de la structure spatiale d'une population sur un processus évolutionnaire artificiel. Dans le domaine de l'Evolution Artificielle on peut observer une tendence à évoluer d'une façon synchrone des populations panmictiques, où chaque individu peut être récombiné avec tout autre individu dans la population. Déjà dans les année '90, Spiessens et Manderick, Sarma et De Jong, et Gorges-Schleuter ont observé que, si une population possède une structure régulière mono- ou bi-dimensionnelle, le processus évolutionnaire montre une dynamique différente de celle d'une population panmictique. En particulier, Sarma et De Jong ont étudié la pression de sélection (c-à-d la diffusion d'un individu optimal quand seul l'opérateur de sélection est actif) induite par une structure régulière bi-dimensionnelle de la population, proposant une modélisation logistique des courbes de pression de sélection. Ce modèle suppose que la diffusion d'un individu optimal suit une loi exponentielle. On montre que ce modèle est inadéquat pour décrire ce phénomène, étant donné que la vitesse de croissance doit obéir à une loi quadratique ou sous-quadratique dans le cas d'une structure régulière bi-dimensionnelle. De nouveaux modèles linéaires et sous-quadratique sont proposés pour des structures mono- et bi-dimensionnelles. Ces modèles sont étendus pour décrire des processus évolutionnaires asynchrones. Différentes dynamiques de la population impliquent strategies différentes de recherche de l'algorithme résultant lorsque le processus évolutionnaire est utilisé pour résoudre des problèmes d'optimisation. Un ensemble de problèmes discrets et continus est utilisé pour étudier les charactéristiques de recherche des différentes topologies et mises à jour des populations. Ces dernières années, les études de Watts et Strogatz ont montré que beaucoup de réseaux, aussi bien dans les mondes biologiques et sociologiques que dans les structures produites par l'homme, ont des propriétés mathématiques qui les séparent à la fois des structures régulières et des structures aléatoires. En particulier, ils ont introduit la notion de graphe sm,all-world et ont montré que cette nouvelle famille de structures possède des intéressantes propriétés dynamiques. Des populations ayant ces nouvelles topologies sont proposés, et leurs dynamiques évolutionnaires sont étudiées et modélisées. Pour des populations ayant ces structures, des méthodes d'évolution asynchrone sont proposées, et la dynamique résultante est étudiée. Beaucoup de réseaux produits par l'homme se sont formés d'une façon incrémentale, et des explications pour leur forme actuelle ont été proposées, comme le preferential attachment de Albert et Barabàsi. Toutefois, beaucoup de réseaux existants doivent être le produit d'un processus de variation et sélection darwiniennes. Ainsi, la façon dont ces structures ont pu être sélectionnées est une question intéressante restée sans réponse. Dans la dernière partie de ce travail, on montre comment un simple processus évolutif artificiel permet à ce type de topologies d'émerger dans le cas de deux problèmes prototypiques des réseaux d'automates, les tâches de densité et de synchronisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clines in phenotypes and genotype frequencies across environmental gradients are commonly taken as evidence for spatially varying selection. Classical examples include the latitudinal clines in various species of Drosophila, which often occur in parallel fashion on multiple continents. Today, genomewide analysis of such clinal systems provides a fantastic opportunity for unravelling the genetics of adaptation, yet major challenges remain. A well-known but often neglected problem is that demographic processes can also generate clinality, independent of or coincident with selection. A closely related issue is how to identify true genic targets of clinal selection. In this issue of Molecular Ecology, three studies illustrate these challenges and how they might be met. Bergland et al. report evidence suggesting that the well-known parallel latitudinal clines in North American and Australian D. melanogaster are confounded by admixture from Africa and Europe, highlighting the importance of distinguishing demographic from adaptive clines. In a companion study, Machado et al. provide the first genomic comparison of latitudinal differentiation in D. melanogaster and its sister species D. simulans. While D. simulans is less clinal than D. melanogaster, a significant fraction of clinal genes is shared between both species, suggesting the existence of convergent adaptation to clinaly varying selection pressures. Finally, by drawing on several independent sources of evidence, Bo?ičević et al. identify a functional network of eight clinal genes that are likely involved in cold adaptation. Together, these studies remind us that clinality does not necessarily imply selection and that separating adaptive signal from demographic noise requires great effort and care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive immunity is initiated in T-cell zones of secondary lymphoid organs. These zones are organized in a rigid 3D network of fibroblastic reticular cells (FRCs) that are a rich cytokine source. In response to lymph-borne antigens, draining lymph nodes (LNs) expand several folds in size, but the fate and role of the FRC network during immune response is not fully understood. Here we show that T-cell responses are accompanied by the rapid activation and growth of FRCs, leading to an expanded but similarly organized network of T-zone FRCs that maintains its vital function for lymphocyte trafficking and survival. In addition, new FRC-rich environments were observed in the expanded medullary cords. FRCs are activated within hours after the onset of inflammation in the periphery. Surprisingly, FRC expansion depends mainly on trapping of naïve lymphocytes that is induced by both migratory and resident dendritic cells. Inflammatory signals are not required as homeostatic T-cell proliferation was sufficient to trigger FRC expansion. Activated lymphocytes are also dispensable for this process, but can enhance the later growth phase. Thus, this study documents the surprising plasticity as well as the complex regulation of FRC networks allowing the rapid LN hyperplasia that is critical for mounting efficient adaptive immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Excision and primary midline closure for pilonidal disease (PD) is a simple procedure; however, it is frequently complicated by infection and prolonged healing. The aim of this study was to analyze risk factors for surgical site infection (SSI) in this context. METHODS: All consecutive patients undergoing excision and primary closure for PD from January 2002 through October 2008 were retrospectively assessed. The end points were SSI, as defined by the Center for Disease Control, and time to healing. Univariable and multivariable risk factor analyses were performed. RESULTS: One hundred thirty-one patients were included [97 men (74%), median age = 24 (range 15-66) years]. SSI occurred in 41 (31%) patients. Median time to healing was 20 days (range 12-76) in patients without SSI and 62 days (range 20-176) in patients with SSI (P < 0.0001). In univariable and multivariable analyses, smoking [OR = 2.6 (95% CI 1.02, 6.8), P = 0.046] and lack of antibiotic prophylaxis [OR = 5.6 (95% CI 2.5, 14.3), P = 0.001] were significant predictors for SSI. Adjusted for SSI, age over 25 was a significant predictor of prolonged healing. CONCLUSION: This study suggests that the rate of SSI after excision and primary closure of PD is higher in smokers and could be reduced by antibiotic prophylaxis. SSI significantly prolongs healing time, particularly in patients over 25 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lynch syndrome is one of the most common hereditary colorectal cancer (CRC) syndrome and is caused by germline mutations of MLH1, MSH2 and more rarely MSH6, PMS2, MLH3 genes. Whereas the absence of MSH2 protein is predictive of Lynch syndrome, it is not the case for the absence of MLH1 protein. The purpose of this study was to develop a sensitive and cost effective algorithm to select Lynch syndrome cases among patients with MLH1 immunohistochemical silencing. Eleven sporadic CRC and 16 Lynch syndrome cases with MLH1 protein abnormalities were selected. The BRAF c.1799T> A mutation (p.Val600Glu) was analyzed by direct sequencing after PCR amplification of exon 15. Methylation of MLH1 promoter was determined by Methylation-Sensitive Single-Strand Conformation Analysis. In patients with Lynch syndrome, there was no BRAF mutation and only one case showed MLH1 methylation (6%). In sporadic CRC, all cases were MLH1 methylated (100%) and 8 out of 11 cases carried the above BRAF mutation (73%) whereas only 3 cases were BRAF wild type (27%). We propose the following algorithm: (1) no further molecular analysis should be performed for CRC exhibiting MLH1 methylation and BRAF mutation, and these cases should be considered as sporadic CRC; (2) CRC with unmethylated MLH1 and negative for BRAF mutation should be considered as Lynch syndrome; and (3) only a small fraction of CRC with MLH1 promoter methylation but negative for BRAF mutation should be true Lynch syndrome patients. These potentially Lynch syndrome patients should be offered genetic counselling before searching for MLH1 gene mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stringent branch-site codon model was used to detect positive selection in vertebrate evolution. We show that the test is robust to the large evolutionary distances involved. Positive selection was detected in 77% of 884 genes studied. Most positive selection concerns a few sites on a single branch of the phylogenetic tree: Between 0.9% and 4.7% of sites are affected by positive selection depending on the branches. No functional category was overrepresented among genes under positive selection. Surprisingly, whole genome duplication had no effect on the prevalence of positive selection, whether the fish-specific genome duplication or the two rounds at the origin of vertebrates. Thus positive selection has not been limited to a few gene classes, or to specific evolutionary events such as duplication, but has been pervasive during vertebrate evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To better define outcome and prognostic factors in primary pineal tumors. MATERIALS AND METHODS: Thirty-five consecutive patients from seven academic centers of the Rare Cancer Network diagnosed between 1988 and 2006 were included. Median age was 36 years. Surgical resection consisted of biopsy in 12 cases and resection in 21 (2 cases with unknown resection). All patients underwent radiotherapy and 12 patients received also chemotherapy. RESULTS: Histological subtypes were pineoblastoma (PNB) in 21 patients, pineocytoma (PC) in 8 patients and pineocytoma with intermediate differentiation in 6 patients. Six patients with PNB had evidence of spinal seeding. Fifteen patients relapsed (14 PNB and 1 PC) with PNB cases at higher risk (p = 0.031). Median survival time was not reached. Median disease-free survival was 82 months (CI 50 % 28-275). In univariate analysis, age younger than 36 years was an unfavorable prognostic factor (p = 0.003). Patients with metastases at diagnosis had poorer survival (p = 0.048). Late side effects related to radiotherapy were dementia, leukoencephalopathy or memory loss in seven cases, occipital ischemia in one, and grade 3 seizures in two cases. Side effects related to chemotherapy were grade 3-4 leucopenia in five cases, grade 4 thrombocytopenia in three cases, grade 2 anemia in two cases, grade 4 pancytopenia in one case, grade 4 vomiting in one case and renal failure in one case. CONCLUSIONS: Age and dissemination at diagnosis influenced survival in our series. The prevalence of chronic toxicity suggests that new adjuvant strategies are advisable.