165 resultados para Natural Killer T Cells
em Université de Lausanne, Switzerland
Resumo:
To study the adaptation of natural killer (NK) cells to their major histocompatibility complex (MHC) class I environment we have established a novel mouse model with mosaic expression of H-2D(d) using a Cre/loxP system. In these mice, we noticed that NK cells expressing the inhibitory receptor for D(d), Ly49A, were specifically underrepresented among cells with low D(d) levels. That was due to the acquisition of D(d) molecules by the Ly49A+ NK cells that have lost their D(d) transgene. The uptake of H-2D molecules via the Ly49A receptor was restricted to strong ligands of Ly49A. Surprisingly, when Ly49A+ NK cells were D(d+), uptake of the alternative ligand D(k) was not detectable. Similarly, one anti-Ly49A mAb (A1) bound inefficiently when Ly49A was expressed on D(d+) NK cells. Concomitantly, functional assays demonstrated a reduced capacity of Ly49A to inhibit H-2(b)D(d) as compared with H-2(b) NK cells, rendering Ly49A+ NK cells in D(d+) mice particularly reactive. Minor reductions of D(d) levels and/or increases of activating ligands on environmental cells may thus suffice to abrogate Ly49A-mediated NK cell inhibition. The mechanistic explanation for all these phenomena is likely the partial masking of Ly49A by D(d) on the same cell via a lateral binding site in the H-2D(d) molecule.
Resumo:
Natural killer (NK) cells are capable of directly recognizing pathogens, pathogen-infected cells, and transformed cells. NK cells recognize target cells using approximately 100 germ-line encoded receptors, which display activating or inhibitory function. NK cell activation usually requires the engagement of more than one receptor, and these may contribute distinct signaling inputs that are required for the firm adhesion of NK cells to target cells, polarization, and the release of cytotoxic granules, as well as the production of cytokines. In this article we discuss receptor-mediated mechanisms that counteract NK cell activation. The distinct intracellular inhibitory signaling pathways and how they can dominantly interfere with NK cell activation signaling events are discussed first. In addition, mechanisms by which inhibitory receptors modulate cellular activation at the level of receptor-ligand interactions are described. Receptor-mediated inhibition of NK cell function serves three main purposes: ensuring tolerance of NK cells to normal cells, enabling NK cell responses to aberrant host cells that have lost an inhibitory ligand, and, finally, allowing the recognition of certain pathogens that do not express inhibitory ligands.
Resumo:
The effector response of natural killer (NK) cells is determined by opposing signals received through activating and inhibitory receptors. A process termed NK cell education, which is guided by the recognition of Major Histocompatibility Complex class I (MHC-I) molecules, determines how efficiently activating receptors respond to stimulation. This ensures NK cell tolerance to healthy tissues while allowing robust responses to diseased host cells. It was thought that NK cells are educated during their development in the bone marrow and that education fixes the NK cells' functional properties. However, recent findings suggest that the function of mature peripheral NK cells can adapt to changes in their environment and that the persistent exposure to normal-self is essential to maintain NK cell reactivity. Notwithstanding, NK cell stimulation in the context of inflammation can stably improve the functional properties of NK cells.
Resumo:
Human cytomegalovirus (CMV) infection may be a serious complication related to immunosuppression after solid organ transplantation. Due to their cytotoxicity, T-cells and natural killer (NK) cells target and clear the virus from CMV-infected cells. Although immunosuppressive drugs suppress T-cell proliferation and activation, they do not affect NK cells that are crucial for controlling the infection. The regulation of NK cells depends on a wide range of activating and inhibitory receptors such as the family of killer-cell immunoglobulin-like receptors (KIRs). Several human genetic studies have demonstrated the association of KIR genes with the clearance of infections. Since the respective activities of the different KIR proteins expressed by NK cells during CMV infection have not been extensively studied, we analyzed the expression of KIRs in a cohort of 22 CMV-IgG(+) renal transplant patients at the time of CMV reactivation, after antiviral therapy and 6 months later. Our data revealed a marked expression of KIR3DL1 during the acute phase of the reactivation. We set up an in vitro model in which NK cells, derived either from healthy donors or from transplanted patients, target allogeneic fibroblasts, CMV-infected or uninfected. Our results demonstrate a significant correlation between the lysis of CMV-infected fibroblasts and the expression of KIR3DL1. Blocking experiments with antibodies to MHC-I, to NKG2D and to NKG2C confirmed the importance of KIR3DL1. Consequently, our results suggest that KIR proteins and especially KIR3DL1 could play an important role during CMV-infection or CMV reactivation in immunosuppressed patients.
Resumo:
PURPOSE: As a first step for the development of a new cancer immunotherapy strategy, we evaluated whether antibody-mediated coating by MHC class I-related chain A (MICA) could sensitize tumor cells to lysis by natural killer (NK) cells. EXPERIMENTAL DESIGN: Recombinant MICA (rMICA) was chemically conjugated to Fab' fragments from monoclonal antibodies specific for tumor-associated antigens, such as carcinoembryonic antigen, HER2, or CD20. RESULTS: Flow cytometry analysis showed an efficient coating of MICA-negative human cancer cell lines with the Fab-rMICA conjugates. This was strictly dependent on the expression of the appropriate tumor-associated antigens in the target cells. Importantly, preincubation of the tumor cells with the appropriate Fab-rMICA conjugate resulted in NK cell-mediated tumor cell lysis. Antibody blocking of the NKG2D receptor in NK cells prevented conjugate-mediated tumor cell lysis. CONCLUSIONS: These results open the way to the development of immunotherapy strategies based on antibody-mediated targeting of MICA.
Resumo:
Natural Killer (NK) cells use germ line encoded receptors to detect diseased host cells. Despite the invariant recognition structures, NK cells have a significant ability to adapt to their surroundings, such as the presence or absence of MHC class I molecules. It has been assumed that this adaptation occurs during NK cell development, but recent findings show that mature NK cells can also adapt to the presence or absence of MHC class I molecules. Here, we summarize how NK cells adjust to changes in the expression of MHC class I molecules. We propose an extension of existing models, in which MHC class I recognition during NK cell development sequentially instructs and maintains NK cell function. The elucidation of the molecular basis of the two effects may identify ways to improve the fitness of NK cells and to prevent the loss of NK cell function due to persistent alterations in their environment.
Resumo:
Background: Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly.Methodology/Principal Findings: Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo.Conclusion: Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors.
Resumo:
Polyclonal rabbit anti-thymocyte globulin (rATG) is widely used in solid organ transplantation (SOT) as induction therapy or to treat corticosteroid-resistant rejection. In vivo, the effect of rATG on natural killer (NK) cells has not been studied. These cells are of particular relevance after SOT because classical immunosuppressive drugs do not inhibit or even can activate NK cells. A cohort of 20 recipients at low immunological risk, that had been receiving rATG as induction therapy, was analyzed for receptor repertoire, cytotoxicity and capacity of NK cells to secrete IFN-γ before kidney transplantation and at different time points thereafter. NK cells expressed fewer killer-cell immunoglobulin-like receptors (KIR), fewer activating receptors NKG2D, but more inhibitory receptor NKG2A compatible with an immature phenotype in the first 6 months post transplantation. Both cytotoxicity of NK cells and the secretion of IFN-γ were preserved over time after transplantation.
Resumo:
Natural killer (NK) cells show enhanced functional competence when they express inhibitory receptors specific for inherited major histocompatibility complex class I (MHC-I) molecules. Current models imply that NK cell education requires an interaction of inhibitory receptors with MHC-I expressed on other cells. However, the inhibitory Ly49A receptor can also bind MHC-I ligand on the NK cell itself (in cis). Here we describe a Ly49A variant, which can engage MHC-I expressed on other cells but not in cis. Even though this variant inhibited NK cell effector function, it failed to educate NK cells. The association with MHC-I in cis sequestered wild-type Ly49A, and this was found to relieve NK cells from a suppressive effect of unengaged Ly49A. These data explain how inhibitory MHC-I receptors can facilitate NK cell activation. They dissociate classical inhibitory from educating functions of Ly49A and suggest that cis interaction of Ly49A is necessary for NK cell education.
Resumo:
Natural Killer (NK) cells are of special interest in solid organ transplantation (SOT) because classical immunosuppressive drugs could enhance NK cells activity.We studied NK cells after kidney transplantation in three different situations. First, we analysed the peripheral repertoire reconstitution and function of NK cells after a polyclonal rabbit anti-thymocytes globulin (rATG) induction therapy, in 20 patients transplanted with living donor and with a low immunological risk. Second, we analysed the influence of KIR genes on the risk of CMV primo-infection or reactivation in 224 transplanted patients during the first year. Finally, we studied the risk of rejection and graft function during the first 5 years according to the KIR genes. Our study demonstrates that after an intial drop, NK cell reconstitution is fast with a ratio of CD56+/CD3− cells versus CD3+ cells that remains identical. The fraction of NK cells expressing the inhibitory receptor NKG2A significantly increases and the activating receptor NKG2D decreases after transplantation to retrieve the pretransplantation value after one year. The secretion of INF-f × and the cytotoxicity is maintained over time after transplantation. Then, we demonstrated that the presence of 2 KIR missing ligands and a large number of activating KIR gene protected against CMV primo-infection or reactivation during the first year post transplantation. Finally, the KIR genes and their HLA ligands do not influence the long term graft function after univariate and multivariate analysis. Our data suggest that despite the modification of the receptor repertoire, NK cell activity is preserved. NK cells are an important player of the immune response in the first year after transplantation mainly thanks to their anti-infectious activity.
Resumo:
An unusual subset of mature T cells expresses natural killer (NK) cell-related surface markers such as interleukin-2 receptor beta (IL-2R beta; CD122) and the polymorphic antigen NK1.1. These "NK-like" T cells are distinguished by their highly skewed V alpha and V beta repertoire and by their ability to rapidly produce large amounts of IL-4 upon T cell receptor (TCR) engagement. The inbred mouse strain SJL (which expresses NK1.1 on its NK cells) has recently been reported to lack NK1.1+ T cells and consequently to be deficient in IL-4 production upon TCR stimulation. We show here, however, that SJL mice have normal numbers of IL-2R beta+ T cells with a skewed V beta repertoire characteristic of "NK-like" T cells. Furthermore lack of NK1.1 expression on IL-2R beta+ T cells in SJL mice was found by backcross analysis to be controlled by a single recessive gene closely linked to the NKR-P1 complex on chromosome 6 (which encodes the NK1.1 antigen). Analysis of a panel of inbred mouse strains further demonstrated that lack of NK1.1 expression on IL-2R beta+ T cells segregated with NKR-P1 genotype (as assessed by restriction fragment length polymorphism) and thus was not restricted to the SJL strain. In contrast, defective TCR induced IL-4 production (which appeared to be a unique property of SJL mice) seems to be controlled by two recessive genes unlinked to NKR-P1. Collectively, our data indicate that "NK-like" T cells develop normally in SJL mice despite genetically distinct defects in NK1.1 expression and inducible IL-4 production.
Resumo:
The Ly49 natural killer (NK)-cell receptor family comprises both activating and inhibitory members, which recognize major histocompatibility complex (MHC) class I or MHC class I-related molecules and are involved in target recognition. As previously shown, the Ly49E receptor fails to bind to a variety of soluble or cell-bound MHC class I molecules, indicating that its ligand is not an MHC class I molecule. Using BWZ.36 reporter cells, we demonstrate triggering of Ly49E by the completely distinct, non-MHC-related protein urokinase plasminogen activator (uPA). uPA is known to be secreted by a variety of cells, including epithelial and hematopoietic cells, and levels are up-regulated during tissue remodeling, infections, and tumorigenesis. Here we show that addition of uPA to Ly49E-positive adult and fetal NK cells inhibits interferon-gamma secretion and reduces their cytotoxic potential, respectively. These uPA-mediated effects are Ly49E-dependent, as they are reversed by addition of anti-Ly49E monoclonal antibody and by down-regulation of Ly49E expression using RNA interference. Our results suggest that uPA, besides its established role in fibrinolysis, tissue remodeling, and tumor metastasis, could be involved in NK cell-mediated immune surveillance and tumor escape.