318 resultados para NEURONAL DIFFERENTIATION

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triiodothyronine (30 nM) added to serum-free cultures of mechanically dissociated re-aggregating fetal (15-16 days gestation) rat brain cells greatly increased the enzymatic activity of choline acetyltransferase and acetylcholinesterase throughout the entire culture period (33 days), and markedly accelerated the developmental rise of glutamic acid decarboxylase specific activity. The enhancement of choline acetyltransferase and acetylcholinesterase specific activities in the presence of triiodothyronine was even more pronouned in cultures of telencephalic cells. If triiodothyronine treatment was restricted to the first 17 culture days, the level of choline acetyltransferase specific activity at day 33 was 84% of that in chronically treated cultures and 270% of that in cultures receiving triiodothyronine between days 17 and 33, indicating that relatively undifferentiated cells were more responsive to the hormone. Triiodothyronine had no apparent effect on the incorporation of [3H]thymidine at day 5 or on the total DNA content of cultures, suggesting that cellular differentiation, rather than proliferation was affected by the hormone. Our findings in vitro are in good agreement with many observations in vivo, suggesting that rotation-mediated aggregating cell cultures of fetal rat brain provide a useful model to study thyroid hormone action in the developing brain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microtubule-associated protein 1b, also named MAP5 and MAP1x, is essential for neuronal differentiation. In kitten cerebellum, this protein is partially phosphorylated. During early postnatal development, a phosphorylated form was localized prominently in growing parallel fibres and in mitotic spindles of neuroblasts in the germinal layer, whereas a non-phosphorylated MAP1b form was found in dendrites, perikarya and axons. The MAP1x epitope showed the same immunohistochemical distribution, as seen for phosphorylated MAP1b, while its recognition on immunoblots was independent of phosphorylation. It is concluded that post-translational modifications and conformation of MAP1b influence the immunological detection of MAP1b, and are essential in the neuronal growth processes and mitosis. The antibody against the phosphorylated MAP1b may represent a good marker to identify dividing neurones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Xenobiotic exposure is a risk factor in the etiology of neurodegenerative disease. It was recently hypothesized that restricted exposure during brain development could predispose for a neurodegenerative disease later in life. As neuroinflammation contributes to progressive neurodegeneration, it is suspected that neurodevelopmental xenobiotic exposure could elicit a neuroinflammatory process, which over time may assume a detrimental character. We investigated the neurotoxic effects of paraquat (PQ) in three-dimensional whole rat brain cell cultures, exposed during an early differentiation stage, comparing immediate effects-directly post exposure-with long-term effects, 20 days after interrupted PQ-administration. Adverse effects and neuroinflammatory responses were assessed by measuring changes in gene- and protein-expression as well as by determining cell morphology changes. Differentiating neural cultures were highly susceptible to PQ and showed neuronal damage and strong astrogliosis. After the 20-day washout period, neurons partially recovered, whereas astrogliosis persisted, and was accompanied by microglial activation of a neurodegenerative phenotype. Our data shows that immediate and long-term effects of subchronic PQ-exposure differ. Also, PQ-exposure during this window of extensive neuronal differentiation led to a delayed microglial activation, of a character that could promote further pro-inflammatory signals that enable prolonged inflammation, thereby fueling further neurodegeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vitamin A is necessary for normal embryonic development, but its role in the adult brain is poorly understood. Vitamin A derivatives, retinoids, are involved in a complex signaling pathway that regulates gene expression and, in the central nervous system, controls neuronal differentiation and neural tube patterning. Although a major functional implication of retinoic signaling has been repeatedly suggested in synaptic plasticity, learning and memory, sleep, schizophrenia, depression, Parkinson disease, and Alzheimer disease, the targets and the underlying mechanisms in the adult brain remain elusive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT : The development of the retina is a very complex process, occurring through the progressive restriction of cell fates, from pluripotent cell populations to complex tissues and organs. In all vertebrate species analyzed so far, retinal differentiation starts with the generation of retinal ganglion cells (RGC)s. One of the documented key essential events in the specification of RGCs is the expression of ATHS, an atonal homolog encoding a bHLH transcription factor. Despite the putative role of master regulator of RGC differentiation, the mechanism of integrating its functions into a coherent program underlying the production of this subclass of retinal neurons has not yet been elucidated. By using chromatin immunoprecipitation combined with microarray (ChIP-on-chip) we have screened for ATH5 direct targets in the developing chick retina at two consecutive periods: E3.5 (stage HH22) and E6 (stage HH30), covering the stages of progenitor proliferation, neuroepithelium patterning, RGC specification, cell cycle exit and early neuronal differentiation. In parallel, complementary analysis with Affymetrix expression microarrays was conducted. We compared RGCs versus retina to see if the targets correspond to genes preferentially expressed in RGCs. We also precociously overexpressed ATH5 in the retina of individual embryo, and contralateral retina vas used as a control. Our integrated approach allowed us to establish a compendium of ATH5-targets and enabled us to position ATH5 in the transcription network underlying neurogenesis in the retina. Malattia Leventinese (ML) is an autosomal, dominant retinal dystrophy characterized by extracellular, amorphous deposits known as drusen, between the retinal pigment epithelium (RPE) and Bruch's membrane. On the genetic level, it has been associated with a single missense mutation (R345W) in a widely expressed gene with unknown function called EFEMP1. We determined expression patterns of the EFEMP1 gene in normal and ML human retinas. Our data shown that the upregulation of EFEMP1 is not specific to ML eye, except for the region of the ciliary body. We also analyzed the cell compartmentalization of different versions of the protein (both wild type and mutant). Our studies indicate that both abnormal expression of the EFEMP1 gene and mutation and accumulation of EFEMP 1 protein (inside or outside the cells) might contribute to the ML pathology. Résumé : 1er partie : L'ontogenèse de la rétine est un processus complexe au cours duquel des cellules progénitrices sont engagée, par vagues successives, dans des lignées où elles vont d'abord être déterminées puis vont se différencier pour finalement construire un tissu rétinien composé de cinq classes de neurones (les photorécepteurs, les cellules horizontales, bipolaires, amacrines et ganglionnaires) et d'une seule de cellules gliales (les cellules de Muller). Chez tous les vertébrés, la neurogenèse rétinienne est d'abord marquée par la production des cellules ganglionnaires (RGCs). La production de cette classe de neurone est liée à l'expression du gène ATH5 qui est un homologue du gène atonal chez la Drosophile et qui code pour un facteur de transcription de la famille des protéines basic Helix-Loop-Helix (bHLH). Malgré le rôle central que joue ATH5 dans la production des RGCs, le mécanisme qui intègre la fonction de cette protéine dans le programme de détermination neuronale et ceci en relation avec le développement de la rétine n'est pas encore élucidé. Grâce à une technologie qui permet de combiner la sélection de fragments de chromatine liant ATH5 et la recherche de séquences grâce à des puces d'ADN non-codants (ChIP-on-chip), nous avons recherché des cibles potentielles de la protéine ATH5 dans la rétine en développement. Nous avons conduit cette recherche à deux stades de développement de manière à englober la phase de prolifération cellulaire, la détermination des RGCs, la sortie du cycle cellulaire ainsi que les premières étapes de la différentiation de ces neurones. Des expériences complémentaires nous ont permis de définir les patrons d'expression des gènes sélectionnés ainsi que l'activité promotrice des éléments de régulation identifiés lors de notre criblage. Ces approches expérimentales diverses et complémentaires nous ont permis de répertorier des gènes cibles de la protéine ATH5 et d'établir ainsi des liens fonctionnels entre des voies métaboliques dont nous ne soupçonnions pas jusqu'alors qu'elles puissent être associées à la production d'une classe de neurones centraux. 2ème partie : Malattia Leventinese (ML) est une maladie génétique qui engendre une dystrophie de la rétine. Elle se caractérise par l'accumulation de dépôt amorphe entre l'épithélium pigmentaire et la membrane de Bruch et connu sous le nom de drusen. Cette maladie est liée à une simple mutation non-sens (R345W) dans un gène dénommé EFEMP1 qui est exprimé dans de nombreux tissus mais dont la fonction reste mal définie. Une étude détaillée de l'expression de ce gène dans des rétines humaines a révélé une expression à un niveau élevé du gène EFEMP1 dans divers tissus de l'oeil ML mais également dans des yeux contrôles. Alors que l'accumulation d'ARN messager EFEMP1 dans les cellules de l'épithélium pigmentaire n'est pas spécifique à ML, l'expression de ce gène dans le corps cilié n'a été observée que dans l'oeil ML. Nous avons également comparé la sécrétion de la protéine sauvage avec celle porteuse de la mutation. En résumé, notre étude révèle que le niveau élevé d'expression du gène EFEMP1 ainsi que l'accumulation de la protéine dans certains compartiments cellulaires pourraient contribuer au développement de pathologies rétiniennes liées à ML.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SUMMARY IN FRENCH Les cellules souches sont des cellules indifférenciées capables a) de proliférer, b) de s'auto¬renouveller, c) de produire des cellules différenciées, postmitotiques et fonctionnelles (multipotencialité), et d) de régénérer le tissu après des lésions. Par exemple, les cellules de souches hematopoiétiques, situées dans la moelle osseuse, peuvent s'amplifier, se diviser et produire diverses cellules différenciées au cours de la vie, les cellules souches restant dans la moelle osseuse et consentant leur propriété. Les cellules souches intestinales, situées dans la crypte des microvillosités peuvent également régénérer tout l'intestin au cours de la vie. La rétine se compose de six classes de neurones et d'un type de cellule gliale. Tous ces types de cellules sont produits par un progéniteur rétinien. Le pic de production des photorécepteurs se situe autour des premiers jours postnatals chez la souris. A cette période la rétine contient les cellules hautement prolifératives. Dans cette étude, nous avons voulu analyser le phénotype de ces cellules et leur potentiel en tant que cellules souches ou progénitrices. Nous nous sommes également concentrés sur l'effet de certains facteurs épigéniques sur leur destin cellulaire. Nous avons observé que toutes les cellules prolifératives isolées à partir de neurorétines postnatales de souris expriment le marqueur de glie radiaire RC2, ainsi que des facteurs de transcription habituellement trouvés dans la glie radiaire (Mash1, Pax6), et répondent aux critères des cellules souches : une capacité élevée d'expansion, un état indifférencié, la multipotencialité (démontrée par analyse clonale). Nous avons étudié la différentiation des cellules dans différents milieux de culture. En l'absence de sérum, l'EGF induit l'expression de la β-tubulin-III, un marqueur neuronal, et l'acquisition d'une morphologie neuronale, ceci dans 15% des cellules présentes. Nous avons également analysé la prolifération de cellules. Seulement 20% des cellules incorporent le bromodéoxyuridine (BrdU) qui est un marqueur de division cellulaire. Ceci démontre que l'EGF induit la formation des neurones sans une progression massive du cycle cellulaire. Par ailleurs, une stimulation de 2h d'EGF est suffisante pour induire la différentiation neuronale. Certains des neurones formés sont des cellules ganglionnaires rétiniennes (GR), comme l'indique l'expression de marqueurs de cellules ganglionnaires (Ath5, Brn3b et mélanopsine), et dans de rare cas d'autres neurones rétiniens ont été observés (photorécepteurs (PR) et cellules bipolaires). Nous avons confirmé que les cellules souches rétiniennes tardives n'étaient pas restreintes au cours du temps et qu'elles conservent leur multipotencialité en étant capables de générer des neurones dits précoces (GR) ou tardifs (PR). Nos résultats prouvent que l'EGF est non seulement un facteur contrôlant le développement glial, comme précédemment démontré, mais également un facteur efficace de différentiation pour les neurones rétiniens, du moins in vitro. D'autre part, nous avons voulu établir si l'oeil adulte humain contient des cellules souches rétiniennes (CSRs). L'oeil de certains poissons ou amphibiens continue de croître pendant l'âge adulte du fait de l'activité persistante des cellules souches rétiniennes. Chez les poissons, le CSRs se situe dans la marge ciliaire (CM) à la périphérie de la rétine. Bien que l'oeil des mammifères ne se développe plus pendant la vie d'adulte, plusieurs groupes ont prouvé que l'oeil de mammifères adultes contient des cellules souches rétiniennes également dans la marge ciliaire plus précisément dans l'épithélium pigmenté et non dans la neurorétine. Ces CSRs répondent à certains critères des cellules souches. Nous avons identifié et caractérisé les cellules souches rétiniennes résidant dans l'oeil adulte humain. Nous avons prouvé qu'elles partagent les mêmes propriétés que leurs homologues chez les rongeurs c.-à-d. auto-renouvellement, amplification, et différenciation en neurones rétiniens in vitro et in vivo (démontré par immunocoloration et microarray). D'autre part, ces cellules peuvent être considérablement amplifiées, tout en conservant leur potentiel de cellules souches, comme indiqué par l'analyse de leur profil d'expression génique (microarray). Elles expriment également des gènes communs à diverses cellules souches: nucleostemin, nestin, Brni1, Notch2, ABCG2, c-kit et son ligand, aussi bien que cyclin D3 qui agit en aval de c-kit. Nous avons pu montré que Bmi1et Oct4 sont nécessaires pour la prolifération des CSRs confortant leur propriété de cellules souches. Nos données indiquent que la neurorétine postnatale chez la souris et l'épithélium pigmenté de la marge ciliaire chez l'humain adulte contiennent les cellules souches rétiniennes. En outre, nous avons développé un système qui permet d'amplifier et de cultiver facilement les CSRs. Ce modèle permet de disséquer les mécanismes impliqués lors de la retinogenèse. Par exemple, ce système peut être employé pour l'étude des substances ou des facteurs impliqués, par exemple, dans la survie ou dans la génération des cellules rétiniennes. Il peut également aider à disséquer la fonction de gènes ou les facteurs impliqués dans la restriction ou la spécification du destin cellulaire. En outre, dans les pays occidentaux, la rétinite pigmentaire (RP) touche 1 individu sur 3500 et la dégénérescence maculaire liée à l'âge (DMLA) affecte 1 % à 3% de la population âgée de plus de 60 ans. La génération in vitro de cellules rétiniennes est aussi un outil prometteur pour fournir une source illimitée de cellules pour l'étude de transplantation cellulaire pour la rétine. SUMMARY IN ENGLISH Stem cells are defined as undifferentiated cells capable of a) proliferation, b) self maintenance (self-renewability), c) production of many differentiated functional postmitotic cells (multipotency), and d) regenerating tissue after injury. For instance, hematopoietic stem cells, located in bone marrow, can expand, divide and generate differentiated cells into the diverse lineages throughout life, the stem cells conserving their status. In the villi crypt, the intestinal stem cells are also able to regenerate the intestine during their life time. The retina is composed of six classes of neurons and one glial cell. All these cell types are produced by the retinal progenitor cell. The peak of photoreceptor production is reached around the first postnatal days in rodents. Thus, at this stage the retina contains highly proliferative cells. In our research, we analyzed the phenotype of these cells and their potential as possible progenitor or stem cells. We also focused on the effect of epigenic factor(s) and cell fate determination. All the proliferating cells isolated from mice postnatal neuroretina harbored the radial glia marker RC2, expressed transcription factors usually found in radial glia (Mash 1, Pax6), and met the criteria of stem cells: high capacity of expansion, maintenance of an undifferentiated state, and multipotency demonstrated by clonal analysis. We analyzed the differentiation seven days after the transfer of the cells in different culture media. In the absence of serum, EGF led to the expression of the neuronal marker β-tubulin-III, and the acquisition of neuronal morphology in 15% of the cells. Analysis of cell proliferation by bromodeoxyuridine incorporation revealed that EGF mainly induced the formation of neurons without stimulating massively cell cycle progression. Moreover, a pulse of 2h EGF stimulation was sufficient to induce neuronal differentiation. Some neurons were committed to the retinal ganglion cell (RGC) phenotype, as revealed by the expression of retinal ganglion markers (Ath5, Brn3b and melanopsin), and in few cases to other retinal phenotypes (photoreceptors (PRs) and bipolar cells). We confirmed that the late RSCs were not restricted over-time and conserved multipotentcy characteristics by generating retinal phenotypes that usually appear at early (RGC) or late (PRs) developmental stages. Our results show that EGF is not only a factor controlling glial development, as previously shown, but also a potent differentiation factor for retinal neurons, at least in vitro. On the other hand, we wanted to find out if the adult human eye contains retina stem cells. The eye of some fishes and amphibians continues to grow during adulthood due to the persistent activity of retinal stem cells (RSCs). In fish, the RSCs are located in the ciliary margin zone (CMZ) at the periphery of the retina. Although, the adult mammalian eye does not grow during adult life, several groups have shown that the adult mouse eye contains retinal stem cells in the homologous zone (i.e. the ciliary margin), in the pigmented epithelium and not in the neuroretina. These RSCs meet some criteria of stem cells. We identified and characterized the human retinal stem cells. We showed that they posses the same features as their rodent counterpart i.e. they self-renew, expand and differentiate into retinal neurons in vitro and in vivo (indicated by immunostaining and microarray analysis). Moreover, they can be greatly expanded while conserving their sternness potential as revealed by the gene expression profile analysis (microarray approach). They also expressed genes common to various stem cells: nucleostemin, nestin, Bmil , Notch2, ABCG2, c-kit and its ligand, as well as cyclin D3 which acts downstream of c-kit. Furthermore, Bmil and Oct-4 were required for RSC proliferation reinforcing their stem cell identity. Our data indicate that the mice postnatal neuroretina and the adult pigmented epithelium of adult human ciliary margin contain retinal stem cells. We developed a system to easily expand and culture RSCs that can be used to investigate the retinogenesis. For example, it can help to screen drugs or factors involved, for instance, in the survival or generation of retinal cells. This could help to dissect genes or factors involved in the restriction or specification of retinal cell fate. In Western countries, retinitis pigmentosa (RP) affects 1 out of 3'500 individuals and age-related macula degeneration (AMD) strikes 1 % to 3% of the population over 60. In vitro generation of retinal cells is thus a promising tool to provide an unlimited cell source for cellular transplantation studies in the retina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Notch signaling regulates multiple differentiation processes and cell fate decisions during both invertebrate and vertebrate development. Numb encodes an intracellular protein that was shown in Drosophila to antagonize Notch signaling at binary cell fate decisions of certain cell lineages. Although overexpression experiments suggested that Numb might also antagonize some Notch activity in vertebrates, the developmental processes in which Numb is involved remained elusive. RESULTS: We generated mice with a homozygous inactivation of Numb. These mice died before embryonic day E11.5, probably because of defects in angiogenic remodeling and placental dysfunction. Mutant embryos had an open anterior neural tube and impaired neuronal differentiation within the developing cranial central nervous system (CNS). In the developing spinal cord, the number of differentiated motoneurons was reduced. Within the peripheral nervous system (PNS), ganglia of cranial sensory neurons were formed. Trunk neural crest cells migrated and differentiated into sympathetic neurons. In contrast, a selective differentiation anomaly was observed in dorsal root ganglia, where neural crest--derived progenitor cells had migrated normally to form ganglionic structures, but failed to differentiate into sensory neurons. CONCLUSIONS: Mouse Numb is involved in multiple developmental processes and required for cell fate tuning in a variety of lineages. In the nervous system, Numb is required for the generation of a large subset of neuronal lineages. The restricted requirement of Numb during neural development in the mouse suggests that in some neuronal lineages, Notch signaling may be regulated independently of Numb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus. METHODOLOGY/FINDINGS: Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation. CONCLUSIONS/SIGNIFICANCE: This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanisms that guide progenitor cell fate and differentiation in the vertebrate central nervous system (CNS) are poorly understood. Gain-of-function experiments suggest that Notch signaling is involved in the early stages of mammalian neurogenesis. On the basis of the expression of Notch1 by putative progenitor cells of the vertebrate CNS, we have addressed directly the role of Notch1 in the development of the mammalian brain. Using conditional gene ablation, we show that loss of Notch1 results in premature onset of neurogenesis by neuroepithelial cells of the midbrain-hindbrain region of the neural tube. Notch1-deficient cells do not complete differentiation but are eliminated by apoptosis, resulting in a reduced number of neurons in the adult cerebellum. We have also analyzed the effects of Notch1 ablation on gliogenesis in vivo. Our results show that Notch1 is required for both neuron and glia formation and modulates the onset of neurogenesis within the cerebellar neuroepithelium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) have been shown to play important roles in both brain development and the regulation of adult neural cell functions. However, a systematic analysis of brain miRNA functions has been hindered by a lack of comprehensive information regarding the distribution of miRNAs in neuronal versus glial cells. To address this issue, we performed microarray analyses of miRNA expression in the four principal cell types of the CNS (neurons, astrocytes, oligodendrocytes, and microglia) using primary cultures from postnatal d 1 rat cortex. These analyses revealed that neural miRNA expression is highly cell-type specific, with 116 of the 351 miRNAs examined being differentially expressed fivefold or more across the four cell types. We also demonstrate that individual neuron-enriched or neuron-diminished RNAs had a significant impact on the specification of neuronal phenotype: overexpression of the neuron-enriched miRNAs miR-376a and miR-434 increased the differentiation of neural stem cells into neurons, whereas the opposite effect was observed for the glia-enriched miRNAs miR-223, miR-146a, miR-19, and miR-32. In addition, glia-enriched miRNAs were shown to inhibit aberrant glial expression of neuronal proteins and phenotypes, as exemplified by miR-146a, which inhibited neuroligin 1-dependent synaptogenesis. This study identifies new nervous system functions of specific miRNAs, reveals the global extent to which the brain may use differential miRNA expression to regulate neural cell-type-specific phenotypes, and provides an important data resource that defines the compartmentalization of brain miRNAs across different cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several groups have demonstrated the existence of self-renewing stem cells in embryonic and adult mouse brain. In vitro, these cells proliferate in response to epidermal growth factor, forming clusters of nestin-positive cells that may be dissociated and subcultured repetitively. Here we show that, in stem cell clusters derived from rat embryonic striatum, cell proliferation decreased with increasing number of passages and in response to elevated concentrations of potassium (30 mM KCl). In monolayer culture, the appearance of microtubule-associated protein type-5-immunoreactive (MAP-5(+)) cells (presumptive neurons) in response to basic fibroblast growth factor (bFGF) was reduced at low cell density and with increasing number of passages. In the presence of bFGF, elevated potassium caused a more differentiated neuronal phenotype, characterized by an increased proportion of MAP-5(+) cells, extensive neuritic branching, and higher specific activity of glutamic acid decarboxylase. Dissociated stem cells were able to invade cultured brain cell aggregates containing different proportions of neurons and glial cells, whereas they required the presence of a considerable proportion of glial cells in the host cultures to become neurofilament H-positive. The latter observation supports the view that astrocyte-derived factors influence early differentiation of the neuronal cell lineage.