19 resultados para NATURAL BIOLOGICAL CONTROL

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particular bacterial strains in certain natural environments prevent infectious diseases of plant roots. How these bacteria achieve this protection from pathogenic fungi has been analysed in detail in biocontrol strains of fluorescent pseudomonads. During root colonization, these bacteria produce antifungal antibiotics, elicit induced systemic resistance in the host plant or interfere specifically with fungal pathogenicity factors. Before engaging in these activities, biocontrol bacteria go through several regulatory processes at the transcriptional and post-transcriptional levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas fluorescens CHA0, an effective biological control agent of soilborne plant diseases, is naturally non-mucoid. We have isolated a highly mucoid Tn5 insertion mutant of strain CHA0. The mucoid phenotype was found to be due to the overproduction of exopolysaccharide (EPS), as a result of a mutation in the mucA gene. The wild-type mucA gene was cloned by a two-step, Tn5-dependent cloning procedure previously described and the deduced amino acid sequence showed 71% identity with MucA of P. aeruginosa, a negative regulator of the alternative sigma factor AlgU (=s22, sE). As in P. aeruginosa, mucA is preceded by the algU gene encoding s22 (91% identity at the amino acid sequence level). A mucA in-frame deletion mutant of CHA0 overproduced EPS and formed mucoid colonies, whereas an algU in-frame deletion mutant showed a non-mucoid phenotype. Pyoluteorin, an antibiotic produced by P. fluorescens, was found to be entrapped in EPS of a mucoid mutant. In natural soil, mucoidy negatively affected survival of the bacteria, suggesting that under these conditions the potential to produce abundant EPS does not confer a selective advantage on the bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The plasmid pME6863, carrying the aiiA gene from the soil bacterium Bacillus sp. A24 that encodes a lactonase enzyme able to degrade N-acyl-homoserine lactones (AHLs), was introduced into the rhizosphere isolate Pseudomonas fluorescens P3. This strain is not an effective biological control agent against plant pathogens. The transformant P. fluorescens P3/pME6863 acquired the ability to degrade AHLs. In planta, P. fluorescens P3/pME6863 significantly reduced potato soft rot caused by Erwinia carotovora and crown gall of tomato caused by Agrobacterium tumefaciens to a similar level as Bacillus sp. A24. Little or no disease reduction was observed for the wild-type strain P3 carrying the vector plasmid without aiiA. Suppression of potato soft rot was observed even when the AHL-degrading P. fluorescens P3/pME6863 was applied to tubers 2 days after the pathogen, indicating that biocontrol was not only preventive but also curative. When antagonists were applied individually with the bacterial plant pathogens, biocontrol activity of the AHL degraders was greater than that observed with several Pseudomonas 2,4-diacetylphloroglucinol-producing strains and with Pseudomonas chlororaphis PCL1391, which relies on production of phenazine antibiotic for disease suppression. Phenazine production by this well characterized biological control strain P. chlororaphis PCL1391 is regulated by AHL-mediated quorum sensing. When P. chlororaphis PCL1391 was co-inoculated with P. fluorescens P3/pME6863 in a strain mixture, the AHL degrader interfered with the normally excellent ability of the antibiotic producer to suppress tomato vascular wilt caused by Fusarium oxysporum f. sp. lycopersici. Our results demonstrate AHL degradation as a novel biocontrol mechanism, but also demonstrate the potential for non-target interactions that can interfere with the biocontrol efficacy of other strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain strains of fluorescent pseudomonads are important biological components of agricultural soils that are suppressive to diseases caused by pathogenic fungi on crop plants. The biocontrol abilities of such strains depend essentially on aggressive root colonization, induction of systemic resistance in the plant, and the production of diffusible or volatile antifungal antibiotics. Evidence that these compounds are produced in situ is based on their chemical extraction from the rhizosphere and on the expression of antibiotic biosynthetic genes in the producer strains colonizing plant roots. Well-characterized antibiotics with biocontrol properties include phenazines, 2,4-diacetylphloroglucinol, pyoluteorin, pyrrolnitrin, lipopeptides, and hydrogen cyanide. In vitro, optimal production of these compounds occurs at high cell densities and during conditions of restricted growth, involving (i) a number of transcriptional regulators, which are mostly pathway-specific, and (ii) the GacS/GacA two-component system, which globally exerts a positive effect on the production of extracellular metabolites at a posttranscriptional level. Small untranslated RNAs have important roles in the GacS/GacA signal transduction pathway. One challenge in future biocontrol research involves development of new strategies to overcome the broad toxicity and lack of antifungal specificity displayed by most biocontrol antibiotics studied so far.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application of microbial biocontrol agents for the control of fungal plant diseases and plant insect pests is a promising approach in the development of environmentally benign pest management strategies. The ideal biocontrol organism would be a bacterium or a fungus with activity against both, insect pests and fungal pathogens. Here we demonstrate the oral insecticidal activity of the root colonizing Pseudomonas fluorescens CHA0, which is so far known for its capacity to efficiently suppress fungal plant pathogens. Feeding assays with CHA0-sprayed leaves showed that this strain displays oral insecticidal activity and is able to efficiently kill larvae of three important insect pests. We further show data indicating that the Fit insect toxin produced by CHA0 and also metabolites controlled by the global regulator GacA contribute to oral insect toxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Entomopathogenic nematodes (EPNs) are tiny parasitic worms that parasitize insects, in which they reproduce. Their foraging behavior has been subject to numerous studies, most of which have proposed that, at short distances, EPNs use chemicals that are emitted directly from the host as host location cues. Carbon dioxide (CO2) in particular has been implicated as an important cue. Recent evidence shows that at longer distances several EPNs take advantage of volatiles that are specifically emitted by roots in response to insect attack. Studies that have revealed these plant-mediated interactions among three trophic levels have been met with some disbelief. Scope This review aims to take away this skepticism by summarizing the evidence for a role of root volatiles as foraging cues for EPNs. To reinforce our argument, we conducted olfactometer assays in which we directly compared the attraction of an EPN species to CO2 and two typical inducible root volatiles. Conclusions The combination of the ubiquitous gas and a more specific root volatile was found to be considerably more attractive than one of the two alone. Hence, future studies on EPN foraging behavior should take into account that CO2 and plant volatiles may work in synergy as attractants for EPNs. Recent research efforts also reveal prospects of exploiting plant-produced signals to improve the biological control of insect pests in the rhizosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pseudomonas fluorescens strain CHA0 is an effective biocontrol agent of various soilborne pathogens. It controls damping-off or root rot caused byPythium ultimum on cucumber, wheat and cress. Strain CHA0 synthesizes several antibiotic metabolites such as hydrogen cyanide, 2,4-diacetylphloroglucinol, and pyoluteorin. The role of pyoluteorin in the suppression of damping-off was investigated. Two Tn5 mutants (CHA660 and CHA661) of strain CHA0 were isolated which had lost the capacity to produce pyoluteorin but still produced 2,4-diacteylphloroglucinol and HCN. These mutants still inhibitedP. ultimum on malt agar (which favours the production of 2,4-diacetylphloroglucinol) but had partially lost the ability to inhibit this pathogen on King's B agar (which favours the production of pyoluteorin). The two pyoluteorin-negative mutants showed a reduced capacity to suppress damping-off of cress caused byP. ultimum but were as effective in the protection of cucumber against this pathogen as the wild-type strain. These results indicate that, depending on the plant, pyoluteorin production plays a role in the suppression of damping-off by strain CHA0 without being a major mechanism in disease suppression. We suggest that the contribution of pyoluteorin to the biocontrol activity of strain CHA0 is determined by the quantity of this antibiotic produced in the rhizosphere, which might depend on the root exudates of the host plant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human glandular kallikrein 2 (hK2) is a trypsin-like serine protease expressed predominantly in the prostate epithelium. Recently, hK2 has proven to be a useful marker that can be used in combination with prostate specific antigen for screening and diagnosis of prostate cancer. The cleavage by hK2 of certain substrates in the proteolytic cascade suggest that the kallikrein may be involved in prostate cancer development; however, there has been very little other progress toward its biochemical characterization or elucidation of its true physiological role. In the present work, we adapt phage substrate technology to study the substrate specificity of hK2. A phage-displayed random pentapeptide library with exhaustive diversity was generated and then screened with purified hK2. Phages displaying peptides susceptible to hK2 cleavage were amplified in eight rounds of selection and genes encoding substrates were transferred from the phage to a fluorescent system using cyan fluorescent protein (derived from green fluorescent protein) that enables rapid determination of specificity constants. This study shows that hK2 has a strict preference for Arg in the P1 position, which is further enhanced by a Ser in P'1 position. The scissile bonds identified by phage display substrate selection correspond to those of the natural biological substrates of hK2, which include protein C inhibitor, semenogelins, and fibronectin. Moreover, three new putative hK2 protein substrates, shown elsewhere to be involved in the biology of the cancer, have been identified thus reinforcing the importance of hK2 in prostate cancer development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many Gram-negative bacteria, the GacS/GacA two-component system positively controls the expression of extracellular products or storage compounds. In the plant-beneficial rhizosphere bacterium Pseudomonas fluorescens CHA0, the GacS/GacA system is essential for the production of antibiotic compounds and hence for biological control of root-pathogenic fungi. The small (119-nt) RNA RsmX discovered in this study, together with RsmY and RsmZ, forms a triad of GacA-dependent small RNAs, which sequester the RNA-binding proteins RsmA and RsmE and thereby antagonize translational repression exerted by these proteins in strain CHA0. This small RNA triad was found to be both necessary and sufficient for posttranscriptional derepression of biocontrol factors and for protection of cucumber from Pythium ultimum. The same three small RNAs also positively regulated swarming motility and the synthesis of a quorum-sensing signal, which is unrelated to N-acyl-homoserine lactones, and which autoinduces the Gac/Rsm cascade. Expression of RsmX and RsmY increased in parallel throughout cell growth, whereas RsmZ was produced during the late growth phase. This differential expression is assumed to facilitate fine tuning of GacS/A-controlled cell population density-dependent regulation in P. fluorescens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 x 10(-8) M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intensive agriculture, in which detrimental farming practices lessen food abundance and/or reduce food accessibility for many animal species, has led to a widespread collapse of farmland biodiversity. Vineyards in central and southern Europe are intensively cultivated; though they may still harbour several rare plant and animal species, they remain little studied. Over the past decades, there has been a considerable reduction in the application of insecticides in wine production, with a progressive shift to biological control (integrated production) and, to a lesser extent, organic production. Spraying of herbicides has also diminished, which has led to more vegetation cover on the ground, although most vineyards remain bare, especially in southern Europe. The effects of these potentially positive environmental trends upon biodiversity remain mostly unknown as regards vertebrates. The Woodlark (Lullula arborea) is an endangered, short-distance migratory bird that forages and breeds on the ground. In southern Switzerland (Valais), it occurs mostly in vineyards. We used radiotracking and mixed effects logistic regression models to assess Woodlark response to modern vineyard farming practices, study factors driving foraging micro-habitat selection, and determine optimal habitat profile to inform management. The presence of ground vegetation cover was the main factor dictating the selection of foraging locations, with an optimum around 55% at the foraging patch scale. These conditions are met in integrated production vineyards, but only when grass is tolerated on part of the ground surface, which is the case on ca. 5% of the total Valais vineyard area. In contrast, conventionally managed vineyards covering a parts per thousand yen95% of the vineyard area are too bare because of systematic application of herbicides all over the ground, whilst the rare organic vineyards usually have a too-dense sward. The optimal mosaic with ca. 50% ground vegetation cover is currently achieved in integrated production vineyards where herbicide is applied every second row. In organic production, ca. 50% ground vegetation cover should be promoted, which requires regular mechanical removal of ground vegetation. These measures are likely to benefit general biodiversity in vineyards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an effort to discover viruses as classical biological control agents, a metatranscriptomics/pyrosequencing approach was used to survey native Solenopsis invicta collected exclusively in Argentina. A new virus was discovered with characteristics consistent with the family Parvoviridae, subfamily Densovirinae. The virus, tentatively named Solenopsis invicta densovirus (SiDNV), represents the first DNA virus discovered in ants (Formicidae) and the first densovirus in a hymenopteran insect. The ambisense genome was 5280 nucleotides in length and the termini possessed asymmetrically positioned inverted terminal repeats, formed hairpin loops, and had transcriptional regulatory elements including CAAT and TATA sites. Phylogenetic analysis revealed that SiDNV belongs to a group that includes two other densoviruses found in insects (Acheta domestica densovirus and Planococcus citri densovirus). SiDNV was prevalent in fire ants from Argentina but completely absent in fire ants found in the USA indicating that this virus has potential for biological control of introduced S. invicta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the complete genome sequence of the free-living bacterium Pseudomonas protegens (formerly Pseudomonas fluorescens) CHA0, a model organism used in plant-microbe interactions, biological control of phytopathogens, and bacterial genetics.