6 resultados para Mutations in proteins
em Université de Lausanne, Switzerland
Resumo:
NR2E3, also called photoreceptor-specific nuclear receptor (PNR), is a transcription factor of the nuclear hormone receptor superfamily whose expression is uniquely restricted to photoreceptors. There, its physiological activity is essential for proper rod and cone photoreceptor development and maintenance. Thirty-two different mutations in NR2E3 have been identified in either homozygous or compound heterozygous state in the recessively inherited enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), and clumped pigmentary retinal degeneration (CPRD). The clinical phenotype common to all these patients is night blindness, rudimental or absent rod function, and hyperfunction of the "blue" S-cones. A single p.G56R mutation is inherited in a dominant manner and causes retinitis pigmentosa (RP). We have established a new locus-specific database for NR2E3 (www.LOVD.nl/eye), containing all reported mutations, polymorphisms, and unclassified sequence variants, including novel ones. A high proportion of mutations are located in the evolutionarily-conserved DNA-binding domains (DBDs) and ligand-binding domains (LBDs) of NR2E3. Based on homology modeling of these NR2E3 domains, we propose a structural localization of mutated residues. The high variability of clinical phenotypes observed in patients affected by NR2E3-linked retinal degenerations may be caused by different disease mechanisms, including absence of DNA-binding, altered interactions with transcriptional coregulators, and differential activity of modifier genes.
Resumo:
NR2E3, a photoreceptor-specific nuclear receptor (PNR), represses cone-specific genes and activates several rod-specific genes. In humans, mutations in NR2E3 have been associated with the recessively-inherited enhanced short-wavelength sensitive S-cone syndrome (ESCS) and, recently, with autosomal dominant (ad) retinitis pigmentosa (RP) (adRP). In the present work, we describe two additional families affected by adRP that carry a heterozygous c.166G>A (p.G56R) mutation in the NR2E3 gene. Functional analysis determined the dominant negative activity of the p.G56R mutant protein as the molecular mechanism of adRP. Interestingly, in one pedigree, the most common causal variant for ESCS (p.R311Q) cosegregated with the adRP-linked p.G56R mutation, and the compound heterozygotes exhibited an ESCS-like phenotype, which in 1 of the 2 cases was strikingly "milder" than the patients carrying the p.G56R mutation alone. Impaired repression of cone-specific genes by the corepressors atrophin-1 (dentatorubral-pallidoluysian atrophy [DRPLA] gene product) and atrophin-2 (arginine-glutamic acid dipeptide repeat [RERE] protein) appeared to be a molecular mechanism mediating the beneficial effect of the p.R311Q mutation. Finally, the functional dominance of the p.R311Q variant to the p.G56R mutation is discussed.
Resumo:
Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.
Resumo:
Gonadotropin hormones undergo important dynamic changes during life. Their rise during puberty stimulates gonadal steroid secretion, triggering the development of secondary sexual characteristics and the acquisition of fertility. The full spectrum of possible mutations and polymorphisms in the human gonadotropins and in their receptor genes has been described in recent years. Patients harboring these mutations display a very wide range of phenotypes affecting all aspects of the reproductive axis. An important insight provided by the careful study of these patients lies in the striking gender differences in the phenotypes associated with a given mutation. As a result, the careful study of these rare patients has allowed us to better define the respective roles of luteinizing hormone and follicle-stimulating hormone in normal human pubertal development and in the achievement of full fertility potential in either males or females. In this work, we describe briefly the known mutations in the genes for both gonadotropins and their receptors, and discuss their genotype/phenotype correlations in light of these important gender differences.
Resumo:
The present study investigated promoter hypermethylation of TP53 regulatory pathways providing a potential link between epigenetic changes and mitochondrial DNA (mtDNA) alterations in breast cancer patients lacking a TP53 mutation. The possibility of using the cancer-specific alterations in serum samples as a blood-based test was also explored. Triple-matched samples (cancerous tissues, matched adjacent normal tissues and serum samples) from breast cancer patients were screened for TP53 mutations, and the promoter methylation profile of P14(ARF), MDM2, TP53 and PTEN genes was analyzed as well as mtDNA alterations, including D-loop mutations and mtDNA content. In the studied cohort, no mutation was found in TP53 (DNA-binding domain). Comparison of P14(ARF) and PTEN methylation patterns showed significant hypermethylation levels in tumor tissues (P < 0.05 and <0.01, respectively) whereas the TP53 tumor suppressor gene was not hypermethylated (P < 0.511). The proportion of PTEN methylation was significantly higher in serum than in the normal tissues and it has a significant correlation to tumor tissues (P < 0.05). mtDNA analysis revealed 36.36% somatic and 90.91% germline mutations in the D-loop region and also significant mtDNA depletion in tumor tissues (P < 0.01). In addition, the mtDNA content in matched serum was significantly lower than in the normal tissues (P < 0.05). These data can provide an insight into the management of a therapeutic approach based on the reversal of epigenetic silencing of the crucial genes involved in regulatory pathways of the tumor suppressor TP53. Additionally, release of significant aberrant methylated PTEN in matched serum samples might represent a promising biomarker for breast cancer.
Resumo:
BACKGROUND: Mutations in the sulfate transporter gene SLC26A2 (DTDST) cause a continuum of skeletal dysplasia phenotypes that includes achondrogenesis type 1B (ACG1B), atelosteogenesis type 2 (AO2), diastrophic dysplasia (DTD), and recessive multiple epiphyseal dysplasia (rMED). In 1972, de la Chapelle et al reported two siblings with a lethal skeletal dysplasia, which was denoted "neonatal osseous dysplasia" and "de la Chapelle dysplasia" (DLCD). It was suggested that DLCD might be part of the SLC26A2 spectrum of phenotypes, both because of the Finnish origin of the original family and of radiographic similarities to ACG1B and AO2. OBJECTIVE: To test the hypothesis whether SLC26A2 mutations are responsible for DLCD. METHODS: We studied the DNA from the original DLCD family and from seven Finnish DTD patients in whom we had identified only one copy of IVS1+2T>C, the common Finnish mutation. A novel SLC26A2 mutation was found in all subjects, inserted by site-directed mutagenesis in a vector harbouring the SLC26A2 cDNA, and expressed in sulfate transport deficient Chinese hamster ovary (CHO) cells to measure sulfate uptake activity. RESULTS: We identified a hitherto undescribed SLC26A2 mutation, T512K, homozygous in the affected subjects and heterozygous in both parents and in the unaffected sister. T512K was then identified as second pathogenic allele in the seven Finnish DTD subjects. Expression studies confirmed pathogenicity. CONCLUSIONS: DLCD is indeed allelic to the other SLC26A2 disorders. T512K is a second rare "Finnish" mutation that results in DLCD at homozygosity and in DTD when compounded with the milder, common Finnish mutation.