8 resultados para Musical Terminology
em Université de Lausanne, Switzerland
Resumo:
Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.
'Toxic' and 'Nontoxic': confirming critical terminology concepts and context for clear communication
Resumo:
If 'the dose makes the poison', and if the context of an exposure to a hazard shapes the risk as much as the innate character of the hazard itself, then what is 'toxic' and what is 'nontoxic'? This article is intended to help readers and communicators: anticipate that concepts such as 'toxic' and 'nontoxic' may have different meanings to different stakeholders in different contexts of general use, commerce, science, and the law; recognize specific situations in which terms and related information could potentially be misperceived or misinterpreted; evaluate the relevance, reliability, and other attributes of information for a given situation; control actions, assumptions, interpretations, conclusions, and decisions to avoid flaws and achieve a desired outcome; and confirm that the desired outcome has been achieved. To meet those objectives, we provide some examples of differing toxicology terminology concepts and contexts; a comprehensive decision-making framework for understanding and managing risk; along with a communication and education message and audience-planning matrix to support the involvement of all relevant stakeholders; a set of CLEAR-communication assessment criteria for use by both readers and communicators; example flaws in decision-making; a suite of three tools to assign relevance vs reliability, align know vs show, and refine perception vs reality aspects of information; and four steps to foster effective community involvement and support. The framework and supporting process are generally applicable to meeting any objective.